
Towards a usable defect prediction tool:
crossbreeding machine learning and heuristics

Vladimir Kovalenko
IntelliJ Labs / JetBrains
St. Petersburg, Russia

Vladimir.Kovalenko@jetbrains.com

Galina Alperovich
IntelliJ Labs / JetBrains
St. Petersburg, Russia

Galina.Shchekotova@jetbrains.com

ABSTRACT
A traditional supervised learning approach to defect pre-
diction has been evaluated in numerous research papers.
The biggest drawback of plain machine learning prediction
models is their demand for labeled data. It sets a high re-
striction on applicability of defect prediction tools based on
such models, and requires considerable time and resources
to train the algorithms.

Building a defect prediction tool that can be used in real-
world applications requires a simpler model that does not re-
quire as much human effort to train. The issue is confronted
by heuristic approaches, such as the Google Bug Prediction
Score, however studies show that the accuracy of heuristic
models is often too low to justify their implementation.

We introduce a combined approach: by using a set of sim-
ple heuristics to identify bug fixes in version control and
generating training instances based on bugfix data and lan-
guage independent features, our combined algorithm per-
forms significantly better than Google’s heuristic, while still
remaining fully automated and language independent. As
traditional classification quality metrics are not applicable
in our case due to lack of precise labeling, we use an empir-
ical method to compare relative prediction quality based on
issue tracker activity.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
defect prediction, machine learning, heuristics, bug predic-
tion tool, VCS data mining

1. INTRODUCTION
A typical scenario of modern software development process
includes a geographically distributed team working with a
huge – up to hundreds of thousands VCS commits and mil-
lions of lines of code – code repository. As the development
processes speed up, the techniques for efficient quality as-
surance and software defect management become more and
more important. Even though in general it is harder to
maintain a larger project, some common patterns about the
way the developers work, and, in particular, about the way
they introduce and fix defects in code, get clearer as the
codebase grows.

Over the last few years the amount of research concerning
making use of data mined from VCS repositories has grown
significantly. One of the most popular research topics, which
addresses the code quality problem, is development of vari-
ous defect prediction models. [1]

Despite a number of successful research experiments, which
show that in most cases it is possible to build a model that
is capable of predicting some of the hotspots in code with
quite a high precision [2], no tools based on prediction mod-
els are known to be used in industry software development
environments. The reason is such tools, easy to set up and
use, probably don’t exist.

According to research papers, the most efficient defect pre-
diction models are based on machine learning algorithms.
The obvious drawback of these models is their demand for
labeled data about past defects and fixes. We believe that
a usable defect prediction tool should not require a lot of
human effort to train.

A well-known example of an experiment with usage of a bug
prediction tool in a real development environment is the
Google case study [3]. The algorithm used in Google was
based on a purely heuristic approach, so the hotspot pre-
diction process was fully automated. In this study we have
used the heuristic score described in [3] as one of comparison
points for the prediction quality.

2. PROBLEM STATEMENT
There are few challenges that we came across while planning
the bug prediction tool prototype development. The very
first one was how to define what the ”suspicious” code is.
After some discussion, we have decided that suspicious, i.e.
buggy, code is the code that is likely to be affected by a



bugfix in the future.

There are several techniques known for finding the suspicious
code. They can be divided in two groups: techniques based
on the heuristics and (more advanced) techniques based on
machine learning.

The former techniques’ disadvantage is the fact that they
can not always be generalized for multiple projects and in
general require building separate models for different projects.
The advantages are simplicity of implementation and rela-
tively low computational complexity.

The latter approaches’ common drawback is the fact that
they require human markup for machine learning process for
each project and also complexity of implementation. Among
advantages are higher precision due to ability to implicitly
find potentially more sophisticated dependencies between
features and dependent variable than any pre-defined heuris-
tic is capable of making use of.

In the final implementation we combine these two approaches
with the goal to get the best out of each and develop a new
technique that is flexible and does not require human train-
ing.

Also, opposing our work in a way to many research papers,
where the applicability scope of the algorithm becomes clear
after the final quality and performance results are evaluated,
we decided to start from the other end and keep the usability
of the future tool in mind from the very beginning.

After discission on implementation restrictions we think that
a usable tool for prediction of the code affected by bugfixes
should satisfy the following criteria:

• It should be able to process data from any version con-
trol system repository

• It should be programming language independent (there-
fore the lowest granularity unit of the suspicious code
will be file level)

• The tool algorithm should not use human interaction
like it is often the case in the learning stage of ML-
based algorithms.

• The code analysis and prediction of suspicious spots
should be near realtime.

• As a result the tool should produce a list of the most
suspicious files that are most likely to be affected by a
bugfix in the future.

In the following sections we briefly describe various aspects
of implementation of the prototype of a tool designed to
meet the criteria mentioned above.

3. IMPLEMENTATION
A simple prediction model based on Weka library was imple-
mented. Also a plugin for TeamCity continuous integration
server1, that was responsible for collecting and processing

1http://jetbrains.com/teamcity

all the data the model needs, was built. The TeamCity API
gave us the ability to write VCS-agnostic code with no bias
to exact VCS implementation used, may it be Git, Subver-
sion, Mercurial, Perforce or other.

3.1 Training data
As mentioned above, human training should not be heavily
used in a tool. Also in this study we could not afford to col-
lect enough of manually labeled data for prediction quality
evaluation. Instead, an attempt to find a way to automati-
cally detect bugfixes among VCS changes was undertaken.

To make it possible, we have manually labeled pieces of VCS
history for several projects, marking if a change was a critical
change for a bug fix or not. After that, for every change
a set of simple per-commit and per-file metrics related to
relative and absolute change size, number of files affected
by commit, the presence of certain keywords like ”fix” in the
commit message, and a few others, was calculated. Then,
using one of Weka clustering algorithms, we have composed
a set of weighted rules based on these metrics, which a bugfix
change is likely to comply to. After the optimization of the
rules and the weights, the ruleset was capable of telling if
a given set of metrics represents a bugfix change or not.
Experimenting with the threshold value, we were able to
settle the precision and recall of the ruleset to values close
to 0.7.

Finally, a minimalistic tool that finds bugfix-candidate changes
in a given code repository using the heuristic ruleset was
built. This heuristically generated data is later used for clas-
sifier learning.

3.2 Learning process
During the learning stage, the input of the model are VCS
commit data and the bugfix markup generated by the tool
described above.

For every file in commit, the following metrics are calculated:

• Change frequency over a certain time period

• Number of authors

• Number of previous modifications

• Time since last change

• File age

• Google heuristic score

In addition, an indicator metric, showing if the commit is
related to a bug tracker issue of type ”Bug” or ”Exception”,
is calculated.

The model keeps track of modifications for every source file
in the project. If the commit is marked as a bugfix, the
model looks up for the sets of metrics representing the states
of every file in this commit right after their previous changes.
These states are believed to be ”buggy”, as the files are fixed
later, so these states are used as training instances for Weka
classifier.



We used two different Weka classifier implementaions: Naive-
BayesUpdateable and HoeffdingTree. As we found later, the
exact choice of classifier implementation does not change the
prediction quality metric dramatically.

During the prediction phase, we calculate the same metrics
for every file in commit and classify the instances using the
trained Weka classifiers.

The output of the classifiers we used is a floating-point num-
ber representing a class probability. Due to imperfection of
the training data, the absolute value of classifier output does
not make much sense and should not be shown to the user.
Instead, the model marks as ”suspicious” a given number of
files with the highest output value among all files recently
changed in the project. After the quality evaluation method
described in the next section was established, we found that
the optimal number of files in the model output was be-
tween 5 and 20. We used the value of 5 in the final quality
evaluation.

4. EVALUATION OF QUALITY
After the model was implemented, we needed to evaluate the
prediction quality. Even though we are lucky to have quite
a few developers among our colleagues, we decided not to
implement a process of manual prediction quality evalua-
tion. The main reason for such decision is that the process
of integration of a tool into the company’s development en-
vironment could not be quick and seamless. Moreover, we
were not sure if we could collect a significant amount of feed-
back in reasonable time at all. Instead we have automated
the process of evaluation.

4.1 Method
A simple tool, which accesses the internal issue tracker and
figures out if the file that was marked as suspicious by the
model was affected by a bugfix change in the future, was
developed. In such case we considered a single prediction
for a file ”successful”, and vice-versa. By calculating the
fraction of successful predictions among all of them, we get a
value that can be interpreted as bugfix probability for files the
model called buggy, which we consider the main prediction
quality metric.

Though it is a synthetic metric and has very little in com-
mon with standard classification quality metrics like preci-
sion and recall, it does not seem to be a problem in our case.
First reason is we don’t have a precisely labeled train set to
evaluate the model prediction precision and recall against.
The other reason is, even if we had the labeled data, using
precision and recall metrics could only let us evaluate the
performance of machine learning algorithms used, and not
quality of the tool in general. Also it is important to note
that in the projects we used for quality evaluation the issue
tracker is used very consistently, so we believe that the bug-
fixes retrieved from issue tracker do represent real bugfixes
very well, so the future bugfix probability calculated in the
way described at least does correlate with human-evaluated
precision.

Using a synthetic quality metric, we cannot make any con-
clusions out of its absolute value. To see if predictions
our model makes are informative at all, we have imple-

Table 1: Bugfix probability for various models,
project A, 12 months

Random Google score top Naive Bayes Decision Tree
0.49 0.56 0.71 0.70

Table 2: Bugfix probability for various models,
project B, 24 months

Random Google score top Naive Bayes Decision Tree
0.50 0.63 0.86 0.87

mented two more simple models to compare the quality met-
ric against. First of these two models is a random model,
which for every revision marks as ”dangerous” a given num-
ber of randomly chosen files from all files modified in previ-
ous revisions. The other model is Google Score top model.
Its output consists of a given number of files with the high-
est values of Google heuristic score among all files modified
previously.

4.2 Results
We have evaluated the model quality using the repository
history and issue tracker data for two JetBrains’ products.
The sample quality metric values are shown in the Tables 1
and 2.

Project A is a very mature project, with the development
history of over 5 years and over 50000 commits in the source
repository.

Project B is smaller, yet still large. It has been developed
for more than 3 years so far, and its repository contains over
20000 commits.

Both projects are written mostly in Java, though both projects’
codebases contain a significant amount (over 10%) of code
in other languages.

As the quality evaluation method described above is imper-
fect also in a way that some of predictions are made by the
model that is learned with the dataset that includes data
for the time period after a prediction was made, it was im-
portant to make it safe to assume that the repository and
code effort structure does not change significantly over the
period studied. It was the reason why we did not use the
whole projects’ change history for prediction quality mea-
surements. Instead, we used smaller chunks no longer than
two years each. The data we show for Project A in the Table
1 is for the 12 months long history chunk. The data in Table
2 is calculated using the 24 months long chunk of Project
B’s change and issue tracker history.

The prediction quality evaluation results shown in Tables
1 and 2 show that our approach performs significantly bet-
ter than Google’s heuristic, while still not requiring human
training thanks to automated heuristic training data gener-
ation method. It is important to note that the Google score
is one of the features used for classification, so the quality
improvement actually comes from the information implicitly
contained in other features’ values.



5. CONCLUSION
During the study described, we built a prototype of a defect
prediction tool implementing a novel approach to defect pre-
diction with strong accent on applicability. The automated
quality evaluation method shows that the tool performs bet-
ter than Google’s heuristic approach while possessing the
same advantage of being automated.

One of the authors of this paper is currently working on
integration of the algorithm described into the company’s
development environment to collect the feedback from de-
velopers and make the final conclusion on applicability of
the approach

We would like to thank our colleagues, and personally Ev-
geniy Koshkin, for productive discussions and help with nu-
merous technical issues we faced during the study.

6. REFERENCES
[1] M. D’Ambros, M. Lanza, and R. Robbes. An extensive

comparison of bug prediction approaches. In Mining
Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 31–41. IEEE, 2010.

[2] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
Software Engineering, IEEE Transactions on,
34(4):485–496, 2008.

[3] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J.
Whitehead. Does bug prediction support human
developers? findings from a google case study. In
Software Engineering (ICSE), 2013 35th International
Conference on, pages 372–381. IEEE, 2013.


