
Generation of Test Scenarios for Non Deterministic

and Concurrent Telecommunication Applications

Kotlyarov Vsevolod, Drobintsev Pavel, Voinov Nikita

Peter the Great Saint-Petersburg Polytechnic University

Saint-Petersburg, Russia

vpk@spbstu.ru

Abstract— The paper presents an approach to tests

generation for industrial software systems with non deterministic

and concurrent behavior. A brief overview of modern model

driven test technologies is presented; benefits and problems of

these approaches are highlighted. Specifics of concurrent and

non deterministic behavior are analyzed to identify issues with

such behavior testing. As result of the issues analysis usage of

non-linear symbolic test scenarios for reducing test suite size is

suggested and presented in examples. Based on the suggestion an

approach for construction of non linear tests from linear ones is

described with an example of industrial project. Results with

description of main benefits for suggested approach are

presented.

Keywords— Model Driven Testing; Automation design of test

scenarios; Reducing of tests explosion.

I. INTRODUCTION

Creation of technologies for software quality assurance is

one of the most actively growing areas of software developing

process. A lot of developing technologies for support of

quality guarantying process are based on formal approach.

Such technologies are called model-oriented and lead to

creation of application formal model with usage of graphical

language, verification or some checking of the model and

different types of generation. If formal representation of

software system is used for generation of application target

code then such approaches are called MDD (Model Driven

Development) [1], MDSD (Model Driven Software

Development) [2] or MDE (Model Driven Engineering)[3]. In

case of formal model is used for testing automation purposes

such as scripts or test generation based on behavior described

in the model the approach can be called MDT (Model Driven

Testing) [4] or MBT (Model Based Testing) [5].
The paper is devoted to description of some experience in

usage of model-oriented technologies for testing of industrial
telecommunication projects. The experience is based on usage
of tests generated from formal models for checking of non
deterministic and concurrent systems quality. Existing
approach is based on linear test generation and execution,
paper provides enhancement for such approach with non linear
tests producing.

II. MODEL ORIENTED APROACH IN TESTING AUTOMATION

Usage of a model-oriented testing is based on creation of

formal models which can be used on different testing phases.

The main feature of such approaches is generation of test suite

in accordance with user defined criteria of coverage.

Statistics collected in companies which use such

approaches shows [6] that model-oriented techniques are

usually used on system testing phase (up to 80% of projects)

with the main goal - functional testing (up to 96%). The

reason of such company’s approach is complexity of system

testing for big industrial projects, which is based on huge

efforts, spent to quality guarantying [7]. To resolve this

problem software developing companies try to reduce efforts

for tests creation and simplify tests execution process. Usually

reducing of testing efforts is linked to communication with

customers because only customer of the software has deep

knowledge about domain specifics and model oriented

approach helps to simplify such communications.

Researchers also consider that more than 80% [6] of

model-oriented approaches are using graphical notations,

which allows simplifying of work with formal notations for

developers. Requirements for knowledge of testers and

customer representatives are reduced by this way and process

of models developing is also simplified.

 The following advantages of model-oriented approaches

in comparison with manual test development methods can be

found in research papers [6]:

 Reduction of software development cost due to usage
of testing automation and verification techniques;

 Ability to use abstract models, which allow to simplify
testing development process and involve customer in
work with software quality checking;

 Tests generation and execution automation, which
allow to reduce cost of testing process;

 Ability to have communication with customer on
requirements level starting from earlier phases of
development process, which allow to identify
inconsistencies on stage of requirements gathering
before system code implementation;

mailto:vpk@spbstu.ru

The following issues are usually highlighted in process of
MDT implementation in software development process [6]:

 Different levels of abstraction in formal model and
code of developing software. The issue leads to
necessity of generated tests customization before
execution on target software code;

 Necessity to customize MDT approaches in projects
from different areas of industry. Usually practices and
techniques from one target domain are not applicable
in another one, this paper presents some unified
approach that can be used in different domains
because it is based on syntax of the model and not on
semantics;

 A shortage of engineers with MDT expertise due to
the lack of such specialists in the market of software
developers and the need to train qualified personnel
for the implementation of MDT approaches within the
software development process of companies.
Approach presented in the paper is based on very
simple and intuitive formal language and this helps to
resolve issue with strong MDT expertise;

 The problem of test suite explosion. A potential
number of tests generated with MDT for checking of
industrial software quality is too huge but the time for
testing cycle is restricted. The main target for
approach presented in the paper is reducing of test
suite in case of non deterministic and concurrent
behaviors presented in formal specification.

TABLE I. COMPARATIVE ANALYSIS OF MDT AND MANUAL

APPROACHES

Table 1 contains comparative analysis of traditional
manual approach and MDT approaches based on different
criteria. Values “high”, “middle” and “low” show qualitative
analysis for different criterion of flexibility and speed obtained
for manual testing (MT) and model driven testing (MDT). A
result of the analysis shows that MDT has a lot of benefits and
its usage in industrial software testing is reasonable. The
following criteria were used:

 Creation of test suite – developing of tests based on
requirements;

 Maintenance of tests – correction of particular tests
associated with the change of the functionality of the
System Under Test (SUT);

 Maintenance of test suite – configuration activity with
goal to make correction in all tests which belong to
test suite;

 Tests execution – execution of tests on SUT;

 Adding of tests – creation of tests on a new SUT
functionality;

 Tests analysis – analysis of tests suite execution
results, debugging and bug fixing;

 Coverage analysis – analysis of test suite coverage
based on user defined criterion.

Comparative analysis shows that the main problems with
MDT are flexibility of creation and adding of test suite. The
issue is mainly based on usage of different levels of
abstraction which are used in software model and real
implementation. The solution here is selection of appropriate
abstraction level for SUT model with usage of effective
graphical notation which not only allows system semantic
description but also simplifies process of model creation.

III. TESTING AUTOMATION IN INDUSTRIAL SOFTWARE

SYSTEMS

One of the main characteristics of industrial software
systems testing is constraint on test suite size, which shall be
used for quality checking. This is connected with automatic or
semi automatic approaches to test creation and execution
when formal model is used for generation of test suite as a set
of system behavior scenarios. Usage of such approach for
models of industrial systems leads to generation of huge test
suite, which supports all scenarios of SUT behavior. But
execution of such test suite is impossible because of
constraints on time to testing and therefore only subset of tests
shall be selected from all test suite for execution on SUT. This
process is called test suite reduction [8].

The goal of test suite reduction is creation of minimal test
suite, which will allow to find the same set of defects as initial
test suite [9]. Usage of such reduction allows to reduce efforts
for maintenance of tests and their execution and as a result
efforts for all testing cycle. Traditional approach to reduction
is based on static analysis and instrumentation of SUT code to
determine a set of tests which satisfy to selected criterion [10].
The main difference in reduction methods is criterion of test
selection. Usually the following criteria are used:

 “All-uses” coverage [11];

 Definition-use associations coverage [12];

 Control flow graph coverage [13, 14];

 Modified Condition/Decision Coverage [15];

 Branches coverage [16];

Testing

phase

MT MDT

Flexibility Speed Flexibility Speed

Creation of
test suite

high low middle high

Maintenance

of tests

middle low middle high

Maintenance

of test suite

low low high high

Tests
execution

high low high high

Adding of

tests

high low middle high

Test analysis middle low high high

Coverage

analysis

low low high high

 Paths coverage [16].

Common part of presented coverage methods is necessity
to SUT code instrumentation for test suite reduction and this
leads to a set of usage limitations. First of all usage of methods
is impossible before finishing of development phase because
code of SUT is needed. Secondly process of code analysis for
big software systems is very complicated task and therefore
testing with initial test suite without reduction can be more
effective than code analysis.

Usage of MDT for test suite reduction is more effective
because code of application is not needed and all coverage
analysis can be done based on system model. Therefore it is
not needed to wait for the finish of code development and test
suite creation can be started when only requirements exist.
The only condition for such method is that semantics of the
model shall not be changed during development, and if such
changes happen then they shall be
addressed in model checking
procedure. At the same time, the
existence of a formal model makes it
possible to apply the following
methods of software verification that
can be used effectively to reduce the
number of tests:

 Model checking;

 Symbolic verification;

 Searching for equivalence
classes;

 Searching for cycle
invariants;

 e.t.c.

Thus, the use of MDT test

approaches in industrial software is

justified not only on test generation

step, but also during analysis and

reduction of the test set to be

executed.

IV. MODEL OF SUT

In modern project

documentation formulation of initial

requirements is specified either

constructively, when the checking procedure can be

reconstructed from the requirement text in a natural language,

or non constructively, when functionality specified in the

requirement contains no hints on how to check it.
A procedure which checks the current requirement is an

exact sequence of the causes and the results of some activities
(coded with actions, signals, states), which analysis can prove
or refute that this requirement is covered. Such checking
procedure can be used as a criterion that a certain requirement
is covered; i.e., it can be a so-called criteria procedure. In the
text below the term “sequence” or “chain” of events will be
used for a criteria procedure.

Different notations can be used for defining such
sequences with to reduce manual efforts for tests development.
One of them is high level notation TTCN [22]. But usage of
formal notation for definition of test suite cannot give any
guaranty of coverage or consistency of test specification. To
achieve this verification procedure shall be used for proving of
different tests properties.

 In suggested approach an existing technology based on
VRS/TAT toolset is used [23]. In VRS/TAT the Use Case
Maps (UCM) notation [17] is used for a model high level
description, while tools for automation of checking and test
generation work with a model in the basic protocols language
[18].

Fig.1 Example of UCM model

A UCM model (Fig. 1) contains a description of a model

of two interacting instances. Each path in the graph from the

event “start” to the event “end” represents some behavioral

scenario. Each path contains a certain number of events

(Responsibilities). Events in the diagram are marked with the

symbol ×, while Stub elements which encode inserted

diagrams are marked with the symbol . As a result, each

scenario contains a certain sequence of events. The set of

possible scenarios is specified through a set of such sequences.

In these terms a chain is determined as a subsequence of

events enough to conclude that the requirement is satisfied. A

path in the UCM diagram, containing the sequence of events

of some chain is called a trace covering the respective

requirement. Tests for experimental evidence that the

requirement is covered can be generated from such trace.

V. FORMAL MODEL IN BASIC PROTOCOLS

A basic protocol (BP) [18] is the main element of the

formal model. It codes the minimal observable step of the

system behavior and represents an analog of the Hoare triplet

with a pre-condition, a post-condition, and a process (an

observable action, a series of actions). The pre and post

conditions are logical formulae with inequalities and

arithmetic operations which describe a subset of system states

before and after the process actions which consist in

sending/receiving messages and/or changing the values of

application variables. BPs may contain symbolic or concrete

parameter values (i.e., for variables in pre and post-conditions,

in expressions for signals, state descriptions, etc.), the

respective tolerance ranges being specified for symbolic

values. Specifying concrete values for BP parameters is called

BP concretization.

A BP may refer to one or more requirements, as well as a

number of BPs or a number of ordered BP sets (BP chains)

may refer to one requirement.

A set of BPs composes a requirement model. One may

construct scenarios or traces to visualize possible behaviors of

the system under design by just combining consistent pre and

post conditions of various BPs. Traces with symbolic

parameters are called symbolic traces. The verifier [3, 4]

proves correctness of a behavior case represented by a

concrete or symbolic trace [19].

A trace set which covers all chains of all requirements

forms the requirement model of the application under

development. This model may be used for generation of a

complete test suite which checks the functional coverage of all

constructively specified requirements [8].

Let 0s
 be some initial system state, which includes the

state of the environment and the states of all agents inserted

into it [20]. Then all possible traces (histories of system

functioning) may be obtained as sequences of the form:

...),(

1

),(

0
222111    mnbmnb ss

),...,(),,(222111 mnbmnb being the concretized BPs.

Here ,..., 21 bb are the names of the respective BPs; ,..., 21 nn

are the names of key agents (a key agent is a particular BP,

whose state may change in this BP); and ...,, 21 mm are the

values of the remaining parameters which satisfy the pre-

conditions of the respective BPs. Post-conditions defining

deterministic transformations, the states ,..., 21 ss are

unambiguously determined by the initial system state and BP

concretization. Let’s describe a system S(P) which realizes a

system P of basic protocols in form of an attributed (or

labeled) transition system. Let’s define the behavior of the

system S(P) in its different states. The states of the system

S(P) are equated to basic language formulae extended with

intermediate states which correspond to execution of the

respective BPs [20].

Let’s denote the behavior of the system S in the state 

as S . Letichevsky proved [18] that the equation for


S

(


S means that all non-deadlock traces are infinite) has the

form:




 
)(

),():),(()(


 
Pp

ppp TSTprocS

Here * is a composition of transitions (proc) and states of

the behavior graph,)},(|{)(pPpP inst pre 

instP is the set of initiated concretized protocols, proc (p) - is

the BP process,  is a constant of successful termination

(shows that the protocol was applied successfully),

))(,(),(pp postTrT   .),(Tr - is a

predicate transformer. Two formulas  and  are provided to

its input, and a new formula  is generated as its output which

strengthens the post-condition  and considers no changed

variables in pre-condition  . In other words, the formula 

is such that   . This strengthening is necessary to apply

next BPs whose post-condition is an indirect corollary of the

post-condition  and the pre-condition  .

The next definition includes finite traces with a successful

termination. For generality, let’s identify a set
0P of

terminating protocols and let
01 \ PPP  . Terminating

protocols are supposed to terminate the system work and do

not expect its continuation. The equation for a complete

system has the form:

)():),(()(

):),(()(

)(

),(

)(

),(

0

1

























Pp

p

Pp

p

pp

pp

T

T

STproc

STprocS

VI. METHODS OF TESTS CREATION FOR NON DETERMINISTIC

AND CONCURRENT BEHAVIOR

Guarantying of SUT quality with usage of MDT approach

is based on execution of generated test suite. For example

generated test can represent a counterexample of some

property violation obtained from verification system. Usage of

verification counterexamples for testing leads to issue with

coverage of system behavior because it covers only particular

system behavior, but for testing purposes it is more interesting

to cover some particular part of all behaviors of the SUT. One

of the possible solutions to avoid the issue with coverage is

traversing of all behavior tree of the system with the goal to

obtain test suite, which will satisfy some coverage criterion. In

this case the user will have test suite, which covers for

example all branches of behavior or all instructions of the

program. Very important that such coverage will be produced

by verification system so we can say that system behavior was

proved in accordance with user defined properties and criteria.

The tests will be linear paths with stimulus sent to the SUT

and responses for controlling of behavior, where linear means

absence of alternative behaviors in the scope of one test. But

usage of such linear tests is not correct in some cases for

testing of complex software systems. The main problems will

appear for testing of passive alternatives and concurrent

behavior. These two cases will be considered in details.

Fig 2. Example of active alternative behavior

A. Testing of Passive Alternatives

Alternative behavior is describing behavior of the SUT,

which is associated with usage of deterministic or non

deterministic selection of future path. If this selection is

deterministic then it can managed by test with sending of

some stimulus or signal to the SUT and controlling of SUT

response. In this case alternative is called “active”. Fig. 2 a)

shows example of active alternative in UCM notation and test

diagram in MSC [21] language, which will cover such

behavior.

The example illustrates the main feature defining that this

situation belongs to active alternative template – this is

direction of the signals Req1 and Req2 in corresponding

responsibilities. These signals are sent into SUT and its

behavior depends on the signals. In other words behavior of

the SUT is managed by test. Testing of such behavior can be

done based on a set of two linear tests, which are presented on

the figure.

“Passive” alternative is a

situation when a signal which

determines future system behavior

comes from SUT. More over this

signal cannot be determined based on

analysis of behavior history presented

in the test. Such behavior is non

deterministic and cannot be tested

with usage of linear test, because test

will check only one of possible

behavior and its correctness will be

determined only on execution phase,

so some mechanism for definition of a

set of tests shall be used. One of the

possible solutions for such situation is

usage of non-linear test with “alt”

construction. Fig. 2 b) shows a

passive alternative example and non-

linear test for checking of its

correctness.

Decision about correctness of

signal coming from SUT is made in

process of the test execution, but not

on test generation phase. So the test

will work in both cases with incoming

signal Res1 and Res2 and will fail

only if some different signal comes.

Usage of non-linear constructions

allows to decompose tests and use

them for testing of passive

alternatives

However usage of non-linear

tests is not usual practice for MDT

approach because generated tests are

based on counterexamples, which are still linear. So

generation of the non-linear tests shall be defined by

additional algorithms, which can be based on UCM structure

analysis with future gluing of a set of traces into non-linear

test.

B. Testing of Concurrent Behavior

As it was described earlier one of the main problems for

testing of concurrent systems is state explosion which is

caused by interleaving between interacting concurrent threads.

A number of states which shall be tested is huge and grows

dramatically in case of adding states to each particular thread.

Testing of such systems becomes very complex due to the

following reasons:

 First of all, in the process of test suite running all
possible combination of states which are traversed
while execution of the system shall be checked.

 Secondly, initialization of the system and its transition
into some particular state is very complex because
execution of one thread can affect another threads and
it leads to necessity of threads interaction analysis.

In the scope of described approach usage of partial order

reduction method is suggested for generation of test suite with

coverage of independent concurrent threads behavior. Also in

this approach a special analysis of threads dependencies based

on UCM language is provided to define additional

synchronization points which helps to enlarge area of state

reduction method applicability. Below detailed description of

the approach is presented and illustrated in examples.

If independency of threads set is proved by some way

then task of test generation is pretty simple. On the first step

the state of the model before AndFork

element shall be stored and concurrent

threads shall be defined (threads start from

AndFork and finish in AndJoin elements).

After threads were determined they shall be

glued into linear test scenario. As a result test

scenario with coverage of all branches is

obtained without any interleaving.

If concurrent threads are dependent to

each other then static analysis of such

dependency shall be performed. As a result

of analysis additional synchronization points

shall be added into the system description

and in this case the task will be reduced to

the previous one.

It should be noted that even if

independency of threads was proved, usage

of one linear trace is not enough due to the

fact that in concurrent systems in most cases

it is impossible to control execution of each thread. This leads

to usage of non-linear traces for testing.

Let’s consider an example of simple concurrent system

described in Fig. 3.

	
Fig.3 Test cases for concurrent threads

Suppose that responsibility elements in this diagram

describe receiving and sending of signals pairs (A;B), (B;C)

and (С;D) by system under test. Then the test which is based

on assumption about threads independency can be presented

like diagram in Fig. 4 a).

For description of the test MSC language is used. Fig 4 a)

shows that only one sequence of system behavior is

A,B,C,D,E,F and in this case it will be correct because the test

manages signals sending into system under test. Now let’s

suppose that responsibilities describe receiving pairs of signals

(A;B), (B;C) and (С;D) from system under test. The test for

such behavior can be described by diagram in Fig. 4 b). This

test will be incorrect because it will fail in cases when the

system behavior is correct. The problem in this case is that in

testing of real software it is impossible without special control

of the test to ensure that the signal pair (A; B) will come first

(the same statement applies to the remaining pairs of signals).

For example sequence C,D,A,B,E,F will be correct from

system point of view, but it will be failed by test case.

Fig.4 Test cases for concurrent threads

To solve this problem, the operator "par" can be used

[21], which is the syntactic structure of language MSC and

allows to describe the interaction of parallel processes. Fig. 5

shows a valid test, obtained by adding the operator par.

Fig.5 Test scenario with “par” construction

The figure shows that the operator consists of three

blocks, each of which describes the interaction of the

environment with one of the concurrent threads. Such record

determines the sequence of arrival of signals in one particular

stream and allows interleaving (without explicitly specifying

all possible options, which significantly reduces the entry test)

between the concurrent processes. It should be noted that the

addition of the operator "par" is a simple procedure and can be

fully automated on the basis of information on the generation

and synchronization of threads.

Thus, the presented approach allows to automatically

generate test suite for testing of concurrent systems based on

information extracted from UCM diagram. The main

advantage of the approach is automatic obtaining of tests

without interleaving which is dramatically reduces test

description. Another benefit is automatic definition of

reduction methods applicability area based on threads

independency analysis.

VII. AN EXAMPLE OF PRESENTED APPROACH

Let’s consider an example of work with passive

alternative and concurrent behavior on small part of industrial

project. The project describes a communication protocol

between user terminal and receiver of satellite signal. Only

small part devoted to configuration activities is considered.

The behavior is presented on Fig 1. in UCM notation.

Behavior of the system starts from ability to receive two

signals which are recfwdACM_CAP_IP and

recACM_CAP_SL. These signals are coming from

environment (in the process of test execution they will be sent

by the test), such situation can be determined as active

alternative behavior.

In case when signal recACM_CAP_SL was received

receiver shall analyze address table and based on analysis

results move to one of the possible alternative:

“good_new_cap_table” or “bad_new_cap_table”. Condition

which determines future path is hidden in variables of SUT

and can not be managed by signals on test level so this

situation is identifying passive alternative behavior and shall

be tested with usage of non-linear construction “alt”. Branches

“changed” and “no_change” have the same semantics.

In case when signal recfwdACM_CAP_IP was received

analysis of address table shall be done by user application.

Passive alternative here is presented in pair of branches

“good_new_cap_table” and “bad_new_cap_table”. In case of

“good_new_cap_table” concurrent behavior with branches

“format_multicast” and “changed/no_change” shall be tested.

As described earlier operator “par” can be used for such

testing. Fig. 6 shows two tests which can be used for testing of

described SUT behavior.

Fig.6 Example of non linear tests

On the figure 6 “conditions” elements of MSC notation

are used to show responsibilities of UCM map with

appropriate signal and actions, which are described in

metadata of these responsibilities. Also MSC element

“reference” is used to describe stubs of UCM map. The first

test describes checking of case with receiving of

“recACM_CAP_SL” signal. Here two “alt” constructions are

used and one of them with “changed” and “no_change”

branches is nested. The second test describes receiving of

recfwd_ACM_CAP_IP signal and consists of two “alt” and

one nested “par” constructions. These two tests fully cover all

possible behaviors of the system and will be converted into

linear representation in process of tests execution.

VIII. PROBLEMS OF SUGGESTED APPROACH

Let’s consider possible problems of suggested approach

implementation. For passive alternative case the problem with

coverage analysis still exists. The issue is based on test

execution, which leads to coverage of only one behavior of the

system in one execution cycle. As described earlier one non-

linear test contains a set of behaviors but in process of its

execution the only one behavior will be used. To avoid such

issue additional coverage analysis shall be made after test

execution procedure. This analysis will allow to identify

which particular behavior were covered and which shall be

covered by additional tests executions.

 Another problem is provided by concurrent behavior

testing. As described earlier such tests can be created based on

linear tests analysis. But a number of tests can be huge

because of interleaving in concurrent systems. Therefore

complexity of non-linear tests creation will grow with adding

of concurrent processes into SUT specification. So additional

methods to reduce a number of tests shall be used to simplify

process of non-linear tests creation.

IX. RESULTS OF THE APPROACH PILOTING

The approach was piloted on three different industrial

telecommunication projects with different number of

concurrent parts. SMTP project devoted to description of

communication protocol has small size (50-100 BPs). Projects

CDMA and Satellite terminal which describe modules of

telecommunication systems have middle size (100-500 BPs).

The Table 2 presents results of the piloting.

TABLE II. RESULTS OF PILOTING IN TELECOMMUNICATION PROJECTS.

The results show that number of non-linear tests is less

than number of linear for all of the projects. The reducing of

test suite strictly depends on a number of protocols which

present non linear behavior. Average reducing of test suite

with usage of suggested approach is near 30%.

X. CONCLUSIONS

Usage of presented approach is effective for testing of

industrial telecommunication systems. It allows to reduce a

number of tests to be executed due to hiding of interleaving

with non linear tests in case of concurrent behavior checking.

Also passive alternative cases can be checked correctly with

non linear tests. Reducing of tests amount depends on

structure of the SUT but in average for piloted project is was

near 30 per cent. This work was supported by FCP grant.

References
[1] Oscar Pastor, Sergio Espana, Jose Ignacio Panach, Nathalie Aquino.

Model-Driven Development. Springer-Verlag Informatik-Spektrum
October 2008, Volume 31, Issue 5, pp 394-407.

[2] Sami Beydeda, Matthias Book, Volker Gruhn. Model-Driven Software
Development. Springer-Verlag Berlin Heidelberg 2005.

[3] Paul Baker, Shiou Loh, FrankWeil, Model-Driven Engineering in a
Large Industrial Context — Motorola Case Study.

[4] Baillargeon, R. and Flores, R., "Model Driven Testing," SAE Technical
Paper 2008-01-0743, 2008, doi:10.4271/2008-01-0743.

[5] Dias-Neto, A.C.; Horta Travassos, G. "Supporting the Combined
Selection of Model-Based Testing Techniques", Software Engineering,
IEEE Transactions on, On page(s): 1025 - 1041 Volume: 40, Issue: 10,
Oct. 2014.

[6] Robert V. Binder, Anne Kramer, Bruno Legeard, 2014 Model-based
Testing User Survey: Results, 2014 http://model-based-

Project BP

number

Non

linear

BP %

Test

scenario

number

(Linear)

Test

scenario

number

(Linear+

non linear)

Reduce

of test

suite %

SMTP 30 10 10 8 20

CDMA 205 43 1171 615 48

Satellite
terminal

191 15 396 291 27

http://link.springer.com/journal/287
http://link.springer.com/journal/287/31/5/page/1
http://model-based-testing.info/wordpress/wp-content/uploads/2014_MBT_User_Survey_Results.pdf
http://model-based-testing.info/wordpress/wp-content/uploads/2014_MBT_User_Survey_Results.pdf

testing.info/wordpress/wp-
content/uploads/2014_MBT_User_Survey_Results.pdf

[7] Fenton, N.E., Ohlsson, N. Quantitative analysis of faults and failures in a
complex software system. Software Engineering, IEEE Transactions on.
Issue 8 Aug 2000

[8] P. Drobintsev, V. Kotlyarov, A. Letichevsky, A Formal Approach to
Test Scenarios Generation Based on Guides. Automatic Control and
Computer Sciences, 2014, Vol. 48, No. 7, pp. 415–423.

[9] McMaster, S. and Memon, A. M. 2005. Call Stack Coverage for Test
Suite Reduction. In Proceedings of the 21st IEEE international
Conference on Software Maintenance (ICSM'05) - Volume 00
(September 25 - 30, 2005). ICSM. IEEE Computer Society, Washington,
DC, 539-548.

[10] Y. Kichigin, An approch to test suite reduction Proceedings of System
Programming Institute http://citforum.ru/SE/testing/kichigin/#1

[11] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling
the size of a test suite. ACM Transactions on Software Engineering and
Methodology, 2(3):270-285, July 1993.

[12] H. Zhu, P. A. V. Hall, and J. H. R. May. Software Unit Test Coverage
and Adequacy. ACM Computing Surveys, Vol.29, No.4, pp.366-427,
December 1997

[13] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong. Empirical
studies of test-suite reduction. Journal of Software Testing, Verification,
and Reliability, V. 12, no. 4, December, 2002.

[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the
effectiveness of dataflow- and controlflow-based test adequacy criteria.
In Proceedings of the 16th International Conference on Software
Engineering, pages 191-200, May 1994.

[15] J. A. Jones, M. J. Harrold. Test-Suite Reduction and Prioritization for
Modified Condition/Decision Coverage. IEEE Transactions on Software
Engineering, Vol. 29, No. 3, March, 2003, pp. 195-209.

[16] B. Beizer, “Software Testing Techniques,” Second Edition, Van
Nostrand Reinhold Company Limited, 1990.

[17] Z.151 : User requirements notation (URN) - Language definition
http://www.itu.int/rec/T-REC-Z.151-200811-I/en

[18] Letichevsky A.A., Kapitonova J.V., Kotlyarov V.P., Letichevsky O.O.,
Volkov V.V., Baranov S.N., Weigert T.: Basic Protocols, Message
Sequence Charts, and the Verification of Requirements Specifications.
In: Proc of ISSRE04 Workshop on Integrated Reliability Engineering
(ISSRE04:WITUL), IRISA, Rennes France (2004)

[19] Kolchin, A., Letichevsky, A., Peschanenko, V., Drobintsev, P.,
Kotlyarov, V. An approach to creating concretized test scenarios within
test automation technology for industrial software projects. Automatic
Control and Computer Sciences Volume 47, Issue 7, December 2013,
Pages 433-442

[20] A.A. Letichevsky, J.V. Kapitonova, V.P. Kotlyarov, A.A. Letichevsky
Jr., N.S.Nikitchenko, V.A. Volkov, and T.Weigert. Insertion modeling
in distributed system design // Проблеми програмування. – 2008. – С.
13–38.

[21] Recommendation ITU_T Z. 120. Message Sequence Chart (MSC),
11/2000.

[22] Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language; ETSI ES
201 873-1 V4.7.1 (2015-06)

[23] Baranov, S., Kotlyarov, V., Letichevsky, A., and Drobintsev, P., The
technology of automation verification and testing in industrial projects,
Proc. St. Petersburg IEEE Chapter, Int. Conf., St. Petersburg, 2005, pp.
81–86.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fenton,%20N.E..QT.&searchWithin=p_Author_Ids:37267519500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ohlsson,%20N..QT.&searchWithin=p_Author_Ids:37357823200&newsearch=true
http://citforum.ru/SE/testing/kichigin/#1
http://www.itu.int/rec/T-REC-Z.151-200811-I/en
http://www.scopus.com/authid/detail.url?authorId=56371355000&eid=2-s2.0-84894640225
http://www.scopus.com/authid/detail.url?authorId=35357916400&eid=2-s2.0-84894640225
http://www.scopus.com/authid/detail.url?authorId=36190302600&eid=2-s2.0-84894640225
http://www.scopus.com/authid/detail.url?authorId=56049610600&eid=2-s2.0-84894640225
http://www.scopus.com/authid/detail.url?authorId=9536159300&eid=2-s2.0-84894640225
http://www.scopus.com/source/sourceInfo.url?sourceId=24906&origin=recordpage
http://www.scopus.com/source/sourceInfo.url?sourceId=24906&origin=recordpage

