
A Need To Specify and Verify Standard Functions
Nikolay V. Shilov

A.P. Ershov Institute of Informatics Systems

Novosibirsk, Russia

shilov@iis.nsk.su

Abstract — The problem of validation of standard

mathematical functions and libraries is well-recognized by

industrial and academic professional community but still is

poorly understood by freshmen and inexperienced developers.

The paper gives two examples (from author's pedagogical

experience) when formal specification and verification of

standard functions do help and are needed.

Keywords — mathematical functions; standard libraries; formal

specification; formal program verification

I.  IS 4 BACAUSE OF RAND()

A. What is ?

How I want a drink, alcoholic of course,

after the heavy lectures involving quantum mechanics.

 James Jeans (1877-1946), British Scientist [14]

Mathematical irrational number  is the ratio of a circle's
circumference to its diameter; it implies that the quarter of the
ration of the area of the circle to the area of a square built on

its diameter is also . This observation leads to Monte Carlo
method for computing approximation of π as follows (Figure
1): to draw a segment of a circle in the first quadrant and the
square around it, then randomly drop dots in the square; the
ratio of dots inside the circle to the total number of dots should
be approximately equal π/4. For example, the series of trials

depicted in the figure gives /48/11, i.e. 2,(90).

Figure 1: Monte Carlo method to compute 

Of course, the above approximation  2,(90) is not good
1
.

Fortunately, almost everyone remembers much better

approximation 3.14. Moreover there are many ways to
memorize more digits than 3 as above. One way is to

1
 The Monte Carlo method isn’t adaptive and is very slow

compared to other methods to compute .

memorize a story in which the word lengths represent the
digits of π: the first word has 3 letters, the second – 1 letter, the
third has 4 letters, and so on; in particular, the epigraph of this
section is an example of a story to memorize 15 digits of the
number.

Some computer languages have a standard function to

compute  approximations. For example, the official site

support.office.com [13] specifies standard PI function
and how to use it as shown in Figure 1.

PI function
This article describes the formula syntax and usage of the PI
function in Microsoft Excel.

Description

Returns the number 3.14159265358979, the mathematical constant
pi, accurate to 15 digits.

Syntax

PI()

The PI function syntax has no arguments

Figure 2: Specification of PI() function in MS Excel

B. Computing  by Monte Carlo

C-program depicted in Figure 3 implements the above

Monte Carlo method to compute an approximation for . It

prescribes to exercise 10 series of 1000000 trials each. This

code was developed by a Computer Science instructor to teach

first-year students C-loops on base of an interesting and very

intuitive algorithm. There were 25 students in the class that

used either Code::Blocks 12.11 or Eclipse Kepler IDEs for

C/C++ with MinGW environment. Let us refer this program as

PiMC ( Monte Carlo) in the sequel.
#include <stdio.h>

#include <time.h>

#include <stdlib.h>

int main(void){

srand(time(NULL));

int i, j, r, n = 10;

float pi_val, x, y;

int n_hits, n_trials=1000000;

for(j = 0; j < n; j++){n_hits=0;

 for(i = 0; i<n_trials; i++){

 r = rand()% 10000000;

 x = r/10000000.0;

 r = rand()% 10000000;

 y = r/10000000.0;

 if(x*x + y*y < 1.0) n_hits++;}

 pi_val = 4.0*n_hits/(float)n_trials;

printf("%f \n", pi_val); } return 0;}

Figure 3: C-program PiMC to compute  approximation

mailto:shilov@iis.nsk.su
https://en.wikipedia.org/wiki/Ratio
https://en.wikipedia.org/wiki/Circle
https://en.wikipedia.org/wiki/Circumference
https://en.wikipedia.org/wiki/Diameter

C.  equals 4

Imagine confuse of the instructor when each of 25 students

in the class got 10 time value 4.000000 as an approximation

for . (See Figure 4 for a snapshot.)

Figure 4: Exercise of program PiMC

But the above outcome of 25 computer experiments was

not the last shock for the instructor this day. Because

Mathematician that came to run the next class proved that  is
really 4. Look at Figure 5 that presents first 3 in a sequence of
figures circumscribing a circle with diameter D: each next
figure results from the previous one by “cutting corners”. The
sequence converges to the circle; hence its perimeter converges

to D. But perimeters of all figures in the sequence are

constant 4D. Hence =4.

Figure 5: First three figures of a series converging to a circle

So we can summaries: very intuitive Monte Carlo
computations and an obvious proof lead us to a paradoxical

conclusion that =4.

D. Formal Methods as a Rescue

First let us rule out mathematical “proof” that =4:

presented mathematical arguments don’t prove that =4, but

demonstrate that convergence in metrics L doesn’t imply
convergence in metrics L2 [8]: the sequence converges to the

circle in metrics L, perimeters of all figures are 4D, but the

circumference of the circle is D3.14D.

Next let us try to figure out what is wrong with computer
program PiMC. Formal Methods [5] can help this time; in
particular let us specify the program in Hoare style by pre- and
post-conditions [2].

The pre-condition may be TRUE since the program has no

input. The post-condition may be pi_val==4.0 since we
know from the program exercise the final value of the variable;
but since the real program works with floating point values,
maybe it makes sense to use more loose post-condition

3.9<=pi_val<=4.1. Due to the exercise we may hope that

╞[TRUE] PiMC [3.9<=pi_val<=4.1],

i.e. that the total correctness assertion is valid.

But if we try to apply verification methodic from [2] to
generate verification conditions and prove the above assertion
then we encounter a problem of formal semantics of the

function rand() in the assignment

r = rand()% 10000000;

that has 2 instances in the program. The standard rule to
generate verification condition for assignment reads

 (x)(t)

 ;

[(x)] x=t [(x)]

for function rand()it leads to

 (x)(rand())

 .

[(x)] x=rand() [(x)]

But, unfortunately, we know too little about properties of this
function to prove any non-trivial verification condition! In
particular, C reference portal [15] provides just a loose
information about this function (Figure 6).

So it is possible to conclude: the cause of wrong 
approximation by the program PiMC is use of the standard

function rand(), its poor specification in the language
standard and no verification in MinGW.

rand
 C Numerics Pseudo-random number generation
Defined in header <stdlib.h>
int rand();
Returns a pseudo-random integral value between 0 and
RAND_MAX (0 and RAND_MAX included).
srand() seeds the pseudo-random number generator used by rand().
If rand() is used before any calls to srand(), rand() behaves as if it
was seeded with srand(1). Each time rand() is seeded with srand(),
it must produce the same sequence of values.
rand() is not guaranteed to be thread-safe.
Parameters
(none)
Return value
Pseudo-random integral value between 0 and RAND_MAX,
inclusive.
Notes
There are no guarantees as to the quality of the random sequence
produced. In the past, some implementations of rand() have had
serious shortcomings in the randomness, distribution and period of
the sequence produced (in one well-known example, the low-order
bit simply alternated between 1 and 0 between calls). rand() is not
recommended for serious random-number generation needs, like
cryptography.
POSIX requires that the period of the pseudo-random number
generator used by rand is at least 232
POSIX offered a thread-safe version of rand called rand_r, which is
obsolete in favor of the drand48 family of functions.

Figure 6: Specification of function rand from C reference

II. WHAT IS SQRT?

A. Solving Quadratic Equations

An error becomes an error when born as truth.

 Stanisław Jerzy Lec (1909-1966),

Polish poet and aphorist [20]

A very popular (but a vulgar for professional education)

approach to teach standard input/output, floating point data

type, sequencing and branching control flow is to program

solving of quadratic equations. (Please check [6][17][18] for

instance.) Below in Figure 7 one can find a variant of this

vulgar code that “solves” quadratic equations in the form ax
2
 +

bx + c = 0.

#include <stdio.h>

#include <math.h>

int main(void){

float a, b, c, d, x;

printf("Input coefficients a, b and c and type

'enter' after each:");

scanf("%f%f%f", &a, &b, &c);

d=b*b -4*a*c;

if (d<0) printf("No root(s).");

else {x= (-b + sqrt(d))/(2*a);

 printf("A root is %f.", x);} return 0;}

Figure 7: A vulgar code to “solve” quadratic equation

We put the verb “solves” to quotation marks because non

of conventional computers can find root of a simple equation

x
2

– 2 = 0 (i.e. 2) due to irrational nature of the number but

finite size all numeric data types in every implementation of C.

Surprisingly, but even C reference [16] says that conventional

computers must be able to compute 2 (refer to Figure 8).
sqrt, sqrtf, sqrtl
C Numerics Common mathematical functions
Defined in header <math.h>
float sqrtf(float arg);
(1) (since C99)
double sqrt(double arg);
(2)
long double sqrtl(long double arg);
(3) (since C99)
Defined in header <tgmath.h>
#define sqrt(arg)
(4) (since C99)
1-3) Computes square root of arg.
4) Type-generic macro: If arg has type long double, sqrtl is called.
Otherwise, if arg has integer type or the type double, sqrt is called.
Otherwise, sqrtf is called. If arg is complex or imaginary, then the
macro invokes the corresponding complex function (csqrtf, csqrt,
csqrtl).
Parameters
arg - floating point value
Return value

If no errors occur, square root of arg (arg), is returned.

If a domain error occurs, an implementation-defined value is returned
(NaN where supported).
If a range error occurs due to underflow, the correct result (after
rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling.
Domain error occurs if arg is less than zero.
If the implementation supports IEEE floating-point arithmetic (IEC
60559),
If the argument is less than -0, FE_INVALID is raised and NaN is
returned.
If the argument is +∞ or ±0, it is returned, unmodified.
If the argument is NaN, NaN is returned

Figure 8: Specification of sqrt-family functions from C

reference

But conventional computers can’t compute in finite time

any irrational number in general and the square root of 2 in

particular. It implies that the above specification of the

standard function sqrt says nonsense and that the function

shouldn’t be used to solve quadratic equations.

Instead the exact value of irrational square root of 2 a

conventional computer can find an approximation of the root

with some precision or (it would be better to say) accuracy.

These approximation and accuracy may be formalized in

different ways discussed in the next section.

B. Alternatives for sqrt

For instance, it makes sense to introduce another function
with two arguments SQR(Y, E) where Y stays for the
argument and E stays for accuracy, that can be formally
specified by any (or both) of the following two clauses:

 if Y0 and E>0 then SQR(Y, E) differs from Y less

than E, i.e. E|Y- E)SQR(Y,| ;

 if Y0 and E>0 then (SQR(Y, E))
2
 differs from Y less

than E, i.e. E |Y- E)SQR(Y,E)SQR(Y,| .

Let us fix the first specification for this paper. Then let us
select a computation method to compute an approximation.
One can select Newton-Raphson Method [7] as a very

intuitive: first guess an initial approximation for the root; then
compute arithmetic mean between the guess and the number
(whose square root you want to obtain) divided by the initial
guess; let this mean to be a new guess for another go-around
while the difference between the next and the previous guesses
is bigger than the half of the accuracy. The method is easy to
implement (see Figure 9).

float ab(float X)

{if (X<0) return(-X); else return(X);}

float SQR(float Y, float E)

{float X, D;

X=Y;

do {D=(Y/X-X)/2; X+=D;} while (ab(D)>E/2);

return X;

}

Figure 9: Floating-point function to compute an

approximation of square root

Both functions in this implementation are easy to specify

formally in Hoare style:

 [X is float] ab(X) [returned value is |X|],

 [Y and E are positive floats]

SQR(Y,E) [E|Y- E)SQR(Y,|].

If to prove these specifications, than SQR may be a good

alternative to the standard function sqrt. Unfortunately, it
isn’t easy to prove automatically and formally [4] due to
several reasons. The major one is axiomatization of computer
floating-point arithmetic [1][19].

Even a manual verification of SQR algorithm SQR
(assuming precise arithmetic for real numbers) isn’t a trivial
exercise. Below in Figure 10 one can see a flowchart of (a little
bit modified) algorithm of function SQR. (Let us refer the
algorithm in the sequel by SQR also.)

Figure 10: Flowchart of the algorithm implemented in SQR

If to specify the algorithm in line with the function then we

need to prove Hoare triple

[Y>0 & E>0 & Y,ER] SQR [E|Y- E)SQR(Y,|].

In case when Y>1 the corresponding partial correctness
assertion can be proved by Floyd method [2] with the
following loop invariant (the correctness assertion for the

control point 2 in the figure): Y>1 & E>0 & YXY  .

Halting (termination) of the algorithm can be proved using
observation that every time the absolute value of D is twice
less (at least) than in the previous iteration.

III. CONCLUDING REMARKS

It worth to remark that a need of better specification and
validation of standard functions is well-recognized by
industrial and academic professional community as well as the
problem of conformance of their implementation with the
specification [4][9][10][11][12]. Paper [4] addresses the formal
verification of some low-level mathematical software for the
Intel® Itanium® architecture; in particular it presents details of
the verification of a square root algorithm with aid of HOL
Light theorem prover. Next two papers [9][10] address formal
specification and testing of standard mathematical functions.
The last two papers [10][12] present formal specification and
verification of some standard memory management and input-
output functions.

But a very serious obstacle for formal verification of
standard mathematical functions is a need of axiomatization of
floating point arithmetic [1][19]. Maybe interval analysis
approach [3] and formalization of interval arithmetic may help

to tackle the problem for functions like sqrt (but not for

functions like rand).
Unfortunately, the problem (or a pitfall) of poorly specified

and verified standard functions and libraries still is poorly
understood by freshmen and inexperienced developers. Better
education, specification and verification are needed to solve
the problem (and avoid the catch of poor libraries).

References
[1] A. Ayad, C. Marché. Multi-prover verification of floating-point

programs. Proceedings of Fifth International Joint Conference on
Automated Reasoning. Lecture Notes in Artificial Intelligence, 2010,
Vol. 6173, p.127-141.

[2] D. Gries, The Science of Programming. Springer-Verlag, 1981.

[3] M.W. Gutowski, Power and beauty of interval methods.
 arXiv:physics/0302034 [physics.data-an]. Visited October 7, 2015.

[4] J. Harrison, Formal Verification of Square Root Algorithms. Formal
Methods in System Design, 2003, Vol.22(2), p.143-153.

[5] C. A. R.. Hoare, The Verifying Compiler: A Grand Challenge for
Computing Research. Perspectives of Systems Informatics (PSI'2003),
SpringerVerlag, Berlin, LNCS., no. 2890, pp. 1-12, 2003.

[6] S.G. Kochan, Programming in C: A Complete Introduction to the C
Programming Language. Exercise #8 at p.162. Sam’s Publishing, 2005
(3rd Edition).

[7] S.G. Kochan, Programming in C: A Complete Introduction to the C
Programming Language. Functions Calling Functions at p.131. Sam’s
Publishing, 2005 (3rd Edition).

[8] A.N. Kolmagorov, S.V. Fomin Elements of Funcions Theory and
Functional Analysis. Nauka Publishers, 1976 (4th ed., in Russian)

[9] V. Kuliamin, Standardization and Testing of Mathematical Functions
Programming and Computer Software, 2007, Vol. 33 (3), p.154-173.

[10] V.V. Kuliamin, Standardization and Testing of Mathematical Functions
in floating point numbers. Proceedings of Int. Conf. Perspectives of

Systems Informatics PSI-2009. Lecture Notes in Computer Science,

2010, Vol. 5947, p. 257-268.

[11] A.V. Promsky, C Program Verification: Verification Condition

Explanation and Standard Library. Automatic Control and Computer

Sciences, 2012, Vol. 46, No. 7, p. 394–401.

[12] A.V. Promsky, Experiments on self-applicability in the C-light

verification system. Bull. Nov.Comp. Center, Comp. Science, Vol.35,
2013, p.85-99.

[13] Pi Function. https://support.office.com/en-us/article/PI-function-
264199d0-a3ba-46b8-975a-c4a04608989b. Visited October 7, 2015.

https://support.office.com/en-us/article/PI-function-264199d0-a3ba-46b8-975a-c4a04608989b
https://support.office.com/en-us/article/PI-function-264199d0-a3ba-46b8-975a-c4a04608989b

[14] Pi. Memorizing digits.
https://en.wikipedia.org/wiki/Pi#Memorizing_digits. Visited October 7,
2015.

[15] C reference. Rand. http://en.cppreference.com/w/c/numeric/random/rand.
Visited October 7, 2015.

[16] C refernce. Sqrt, sqrtf, sqrtl.
http://en.cppreference.com/w/c/numeric/math/sqrt. Visited October 7,
2015.

[17] How to make a program that solves the quadratic formula.
http://www.youtube.com/watch?v=15NbFrBUdu0. Visited October 7,
2015.

[18] Write a C++ program that solves quadratic equation to find its roots.
http://www.cplusplus.com/forum/general/36313/. Visited October 7,
2015.

[19] Hisseo. http://hisseo.saclay.inria.fr/index.html. Visited October 7, 2015.

[20] Stanislaw Jerzy Lec Quotes. http://www.azquotes.com/author/8631-
Stanislaw_Jerzy_Lec. Visited October 7, 2015.

https://en.wikipedia.org/wiki/Pi%23Memorizing_digits
http://en.cppreference.com/w/c/numeric/random/rand
http://en.cppreference.com/w/c/numeric/math/sqrt
http://www.youtube.com/watch?v=15NbFrBUdu0
http://www.cplusplus.com/forum/general/36313/
http://hisseo.saclay.inria.fr/index.html
http://www.azquotes.com/author/8631-Stanislaw_Jerzy_Lec
http://www.azquotes.com/author/8631-Stanislaw_Jerzy_Lec

