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Abstract — The problem of validation of standard 

mathematical functions and libraries is well-recognized by 

industrial and academic professional community but still is 

poorly understood by freshmen and inexperienced developers. 

The paper gives two examples (from author's pedagogical 

experience) when formal specification and verification of 

standard functions do help and are needed. 
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I.  IS 4 BACAUSE OF RAND() 

A. What is ? 

How I want a drink, alcoholic of course, 

after the heavy lectures involving quantum mechanics. 

 James Jeans (1877-1946), British Scientist [14] 

Mathematical irrational number  is the ratio of a circle's 
circumference to its diameter; it implies that the quarter of the 
ration of the area of the circle to the area of a square built on 

its diameter is also . This observation leads to Monte Carlo 
method for computing approximation of π as follows (Figure 
1): to draw a segment of a circle in the first quadrant and the 
square around it, then randomly drop dots in the square; the 
ratio of dots inside the circle to the total number of dots should 
be approximately equal π/4. For example, the series of trials 

depicted in the figure gives /48/11, i.e. 2,(90). 

 

Figure 1: Monte Carlo method to compute  

Of course, the above approximation  2,(90) is not good
1
. 

Fortunately, almost everyone remembers much better 

approximation 3.14. Moreover there are many ways to 
memorize more digits than 3 as above. One way is to 

                                                           
1
 The Monte Carlo method isn’t adaptive and is very slow 

compared to other methods to compute . 

memorize a story in which the word lengths represent the 
digits of π: the first word has 3 letters, the second – 1 letter, the 
third has 4 letters, and so on; in particular, the epigraph of this 
section is an example of a story to memorize 15 digits of the 
number.   

Some computer languages have a standard function to 

compute  approximations. For example, the official site 

support.office.com [13] specifies standard PI function 
and how to use it as shown in Figure 1. 

PI function 
This article describes the formula syntax and usage of the PI 
function in Microsoft Excel. 

Description 

Returns the number 3.14159265358979, the mathematical constant 
pi, accurate to 15 digits. 

Syntax 

PI() 

The PI function syntax has no arguments 

 

Figure 2: Specification of PI( ) function in MS Excel 

B. Computing  by Monte Carlo 

C-program depicted in Figure 3 implements the above 

Monte Carlo method to compute an approximation for . It 

prescribes to exercise 10 series of 1000000 trials each. This 

code was developed by a Computer Science instructor to teach 

first-year students C-loops on base of an interesting and very 

intuitive algorithm. There were 25 students in the class that 

used either Code::Blocks 12.11 or Eclipse Kepler IDEs for 

C/C++ with MinGW environment. Let us refer this program as 

PiMC ( Monte Carlo) in the sequel. 
#include <stdio.h> 

#include <time.h> 

#include <stdlib.h> 

int main(void){ 

srand(time(NULL)); 

int i, j, r, n = 10; 

float pi_val, x, y; 

int n_hits, n_trials=1000000; 

for(j = 0; j < n; j++){n_hits=0; 

        for(i = 0; i<n_trials; i++){ 

               r = rand()% 10000000; 

               x = r/10000000.0; 

               r = rand()% 10000000; 

               y = r/10000000.0; 

               if(x*x + y*y < 1.0) n_hits++;} 

        pi_val = 4.0*n_hits/(float)n_trials; 

printf("%f \n", pi_val); } return 0;} 

 

Figure 3: C-program PiMC to compute  approximation 
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C.   equals 4 

Imagine confuse of the instructor when each of 25 students 

in the class got 10 time value 4.000000 as an approximation 

for .  (See Figure 4 for a snapshot.) 

 

 
Figure 4: Exercise of program PiMC 

 
But the above outcome of 25 computer experiments was 

not the last shock for the instructor this day. Because 

Mathematician that came to run the next class proved that  is 
really 4. Look at Figure 5 that presents first 3 in a sequence of 
figures circumscribing a circle with diameter D: each next 
figure results from the previous one by “cutting corners”. The 
sequence converges to the circle; hence its perimeter converges 

to D. But perimeters of all figures in the sequence are 

constant 4D. Hence =4. 

         

 

 

Figure 5: First three figures of a series converging to a circle 

So we can summaries: very intuitive Monte Carlo 
computations and an obvious proof lead us to a paradoxical 

conclusion that =4. 

D. Formal Methods as a Rescue 

First let us rule out mathematical “proof” that =4: 

presented mathematical arguments don’t prove that =4, but 

demonstrate that convergence in metrics L doesn’t imply 
convergence in metrics L2 [8]: the sequence converges to the 

circle in metrics L, perimeters of all figures are 4D, but the 

circumference of the circle is D3.14D. 

Next let us try to figure out what is wrong with computer 
program PiMC. Formal Methods [5] can help this time; in 
particular let us specify the program in Hoare style by pre- and 
post-conditions [2].  

The pre-condition may be TRUE since the program has no 

input. The post-condition may be pi_val==4.0 since we 
know from the program exercise the final value of the variable; 
but since the real program works with floating point values, 
maybe it makes sense to use more loose post-condition 

3.9<=pi_val<=4.1.  Due to the exercise we may hope that 

╞[TRUE] PiMC [3.9<=pi_val<=4.1], 

i.e. that the total correctness assertion is valid. 

But if we try to apply verification methodic from [2] to 
generate verification conditions and prove the above assertion 
then we encounter a problem of formal semantics of the 

function rand() in the assignment 

r = rand()% 10000000; 

that has 2 instances in the program. The standard rule to 
generate verification condition for assignment reads 

    (x)(t) 

                    ; 

[(x)] x=t [(x)] 

 
 

for function rand()it  leads to  

    (x)(rand()) 

                          . 

[(x)] x=rand() [(x)] 

 
But, unfortunately, we know too little about properties of this 
function to prove any non-trivial verification condition! In 
particular, C reference portal [15] provides just a loose 
information about this function (Figure 6). 

So it is possible to conclude: the cause of wrong  
approximation by the program PiMC is use of the standard 

function rand(), its poor specification in the language 
standard and no verification in MinGW.  

 



rand 
  C  Numerics  Pseudo-random number generation  
Defined in header <stdlib.h> 
int rand(); 
Returns a pseudo-random integral value between 0 and 
RAND_MAX (0 and RAND_MAX included). 
srand() seeds the pseudo-random number generator used by rand(). 
If rand() is used before any calls to srand(), rand() behaves as if it 
was seeded with srand(1). Each time rand() is seeded with srand(), 
it must produce the same sequence of values. 
rand() is not guaranteed to be thread-safe. 
Parameters 
(none) 
Return value 
Pseudo-random integral value between 0 and RAND_MAX, 
inclusive. 
Notes 
There are no guarantees as to the quality of the random sequence 
produced. In the past, some implementations of rand() have had 
serious shortcomings in the randomness, distribution and period of 
the sequence produced (in one well-known example, the low-order 
bit simply alternated between 1 and 0 between calls). rand() is not 
recommended for serious random-number generation needs, like 
cryptography. 
POSIX requires that the period of the pseudo-random number 
generator used by rand is at least 232 
POSIX offered a thread-safe version of rand called rand_r, which is 
obsolete in favor of the drand48 family of functions.  

 

Figure 6: Specification of function rand from C reference 
 

II. WHAT IS SQRT?  

A. Solving Quadratic Equations 

An error becomes an error when born as truth. 

 Stanisław Jerzy Lec (1909-1966),  

Polish poet and aphorist [20] 

A very popular (but a vulgar for professional education) 

approach to teach standard input/output, floating point data 

type, sequencing and branching control flow is to program 

solving of quadratic equations. (Please check [6][17][18] for 

instance.) Below in Figure 7 one can find a variant of this 

vulgar code that “solves” quadratic equations in the form ax
2
 + 

bx + c = 0. 

 
#include <stdio.h> 

#include <math.h> 

int main(void){ 

float a, b, c, d, x; 

printf("Input coefficients a, b and c and type 

'enter' after each:"); 

scanf("%f%f%f", &a, &b, &c); 

d=b*b -4*a*c; 

if (d<0) printf("No root(s)."); 

else {x= (-b + sqrt(d))/(2*a);  

      printf("A root is %f.", x);}  return 0;} 

 

Figure 7: A vulgar code to “solve” quadratic equation 

    

We put the verb “solves” to quotation marks because non 

of conventional computers can find root of a simple equation 

x
2 

– 2 = 0 (i.e. 2 ) due to irrational nature of the number but 

finite size all numeric data types in every implementation of C. 

Surprisingly, but even C reference [16] says that conventional 

computers must be able to compute 2 (refer to Figure 8). 
sqrt, sqrtf, sqrtl 
C  Numerics  Common mathematical functions  
Defined in header <math.h> 
float       sqrtf( float arg ); 
(1) (since C99) 
double      sqrt( double arg ); 
(2)  
long double sqrtl( long double arg ); 
(3) (since C99) 
Defined in header <tgmath.h> 
#define sqrt( arg ) 
(4) (since C99) 
1-3) Computes square root of arg. 
4) Type-generic macro: If arg has type long double, sqrtl is called. 
Otherwise, if arg has integer type or the type double, sqrt is called. 
Otherwise, sqrtf is called. If arg is complex or imaginary, then the 
macro invokes the corresponding complex function (csqrtf, csqrt, 
csqrtl). 
Parameters 
arg - floating point value 
Return value 

If no errors occur, square root of arg ( arg ), is returned. 

If a domain error occurs, an implementation-defined value is returned 
(NaN where supported). 
If a range error occurs due to underflow, the correct result (after 
rounding) is returned. 
Error handling 
Errors are reported as specified in math_errhandling. 
Domain error occurs if arg is less than zero. 
If the implementation supports IEEE floating-point arithmetic (IEC 
60559), 
If the argument is less than -0, FE_INVALID is raised and NaN is 
returned. 
If the argument is +∞ or ±0, it is returned, unmodified. 
If the argument is NaN, NaN is returned 

 
Figure 8: Specification of sqrt-family functions from C 

reference 

 

But conventional computers can’t compute in finite time 

any irrational number in general and the square root of 2 in 

particular. It implies that the above specification of the 

standard function sqrt says nonsense and that the function 

shouldn’t be used to solve quadratic equations.  

Instead the exact value of irrational square root of 2 a 

conventional computer can find an approximation of the root 

with some precision or (it would be better to say) accuracy. 

These approximation and accuracy may be formalized in 

different ways discussed in the next section.  

B. Alternatives for sqrt 

For instance, it makes sense to introduce another function 
with two arguments SQR(Y, E) where Y stays for the 
argument and E stays for accuracy, that can be formally 
specified by any (or both) of the following two clauses: 

 if Y0 and E>0 then SQR(Y, E) differs from Y  less   

than E, i.e. E|Y- E)SQR(Y,| ; 

 if Y0 and E>0 then (SQR(Y, E))
2
 differs from Y less  

than E, i.e. E |Y- E)SQR(Y,E)SQR(Y,| . 

Let us fix the first specification for this paper. Then let us 
select a computation method to compute an approximation. 
One can select Newton-Raphson Method [7] as a very 



intuitive: first guess an initial approximation for the root; then 
compute arithmetic mean between the guess and the number 
(whose square root you want to obtain) divided by the initial 
guess; let this mean to be a new guess for another go-around 
while the difference between the next and the previous guesses 
is bigger than the half of the accuracy.  The method is easy to 
implement (see Figure 9). 

 
float ab(float X) 

{if (X<0) return(-X); else return(X);} 

 

float SQR(float Y, float E) 

{float X, D; 

X=Y; 

do {D=(Y/X-X)/2; X+=D;} while (ab(D)>E/2); 

return X; 

} 

 

Figure 9: Floating-point function to compute an 

approximation of square root 

 

Both functions in this implementation are easy to specify 

formally in Hoare style: 

 [X is float] ab(X) [returned value is |X|], 

 [Y and E are positive floats]  

SQR(Y,E) [ E|Y- E)SQR(Y,| ]. 

If to prove these specifications, than SQR may be a good 

alternative to the standard function sqrt. Unfortunately, it 
isn’t easy to prove automatically and formally [4] due to 
several reasons. The major one is axiomatization of computer 
floating-point arithmetic [1][19].  

Even a manual verification of SQR algorithm SQR 
(assuming precise arithmetic for real numbers) isn’t a trivial 
exercise. Below in Figure 10 one can see a flowchart of (a little 
bit modified) algorithm of function SQR. (Let us refer the 
algorithm in the sequel by SQR also.) 

    

 
 

Figure 10: Flowchart of the algorithm implemented in SQR 

 
If to specify the algorithm in line with the function then we 

need to prove Hoare triple  

[Y>0 & E>0 & Y,ER] SQR [ E|Y- E)SQR(Y,| ]. 

In case when Y>1 the corresponding partial correctness 
assertion can be proved by Floyd method [2] with the 
following loop invariant (the correctness assertion for the 

control point 2 in the figure): Y>1 & E>0 & YXY  . 

Halting (termination) of the algorithm can be proved using 
observation that every time the absolute value of D is twice 
less (at least) than in the previous iteration. 

III. CONCLUDING REMARKS 

It worth to remark that a need of better specification and 
validation of standard functions is well-recognized by 
industrial and academic professional community as well as the 
problem of conformance of their implementation with the 
specification [4][9][10][11][12]. Paper [4] addresses the formal 
verification of some low-level mathematical software for the 
Intel® Itanium® architecture; in particular it presents details of 
the verification of a square root algorithm with aid of HOL 
Light theorem prover. Next two papers [9][10] address formal 
specification and testing of standard mathematical functions. 
The last two papers [10][12] present formal specification and 
verification of some standard memory management and input-
output functions.  

But a very serious obstacle for formal verification of 
standard mathematical functions is a need of axiomatization of 
floating point arithmetic [1][19]. Maybe interval analysis 
approach [3] and formalization of interval arithmetic may help 

to tackle the problem for functions like sqrt (but not for 

functions like rand). 
Unfortunately, the problem (or a pitfall) of poorly specified 

and verified standard functions and libraries still is poorly 
understood by freshmen and inexperienced developers. Better 
education, specification and verification are needed to solve 
the problem (and avoid the catch of poor libraries). 
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