
Trading Day Logs Replay Limitations and Test Tools Applicability

Pavel Protsenko

Exactpro Systems

pprotsenko@lseg.com

Anna Khristenok

Exactpro Systems

anna.khristenok@exactprosystems.com

Anna-Maria Lukina

Exactpro Systems

anmay@exactpro.com

Andrey Alexeenko

Exactpro Systems

andrey.alexeenko@exactprosystems.com

Tatiana Pavlyuk

Exactpro Systems

tatiana.pavlyuk@exactprosystems.com

Iosif Itkin

Exactpro Systems

iosif.itkin@exactpro.com

Abstract - This paper is an experience report on replaying full

trading day production log files for dynamic verification of

securities exchange matching engines. Three types of test

automation tools developed in-house are described along with

their characteristics. The paper analyzes various approaches to

reproduce processes and scenarios observed in the systems

during their production usage. The applicability and limitations

of these approaches are also considered. The authors point out

that for most complex distributed real-time trading systems it is

extremely difficult to obtain an identical behavior using

production logs replay via external gateways. It might be possible

to achieve this by implementing additional instrumentation inside

the exchange system’s core. The authors assume however that

such an intrusion has limited value and should not be prioritized

over other, more appropriate, test design methods for testing

such systems.

Keywords – test tools, trading systems, matching engines,

exchanges, test design, data replay

I. Introduction
Quality and reliability of stock exchange trading platforms is

crucial for integrity of the global financial markets. Rapid

increase in the volumes of transactional data, the never ending

race to zero latency and growing complexity of the market

infrastructure is what turns modern exchanges into very large

distributed real-time systems presenting significant testing and

maintenance challenges [1]. Exchange operators want

confidence knowing that changes introduced into the system

will not result in regression problems. Quite frequently

operators express a desire to have the ability to reproduce

production activity for a given trading day in a test

environment.

Recorded data replay is widely used across different

industries, including telecommunications [2], web-portals [3],

and industrial automation [4]. In addition to the ability of

repeating the normal behavior of systems, record replay can be

used as an effective way of reproducing failures that occur in

the field during production exploitation of software systems.

Intensive research is underway to propose instrumentation

required to replicate the activity in multi-threaded

environments [5, 6, 7]. A substantial effort is targeted at

reducing the overhead caused by the instrumentation without

losing the ability to correctly replicate the sequence of events.

As most of high frequency trading systems are trying to avoid

any possible overhead, their authors often face a strong push

from the stakeholders towards minimizing any additional

internal instrumentation and relying on external gateways in

implementing record replay test harnesses. This paper

contains an industrial case study of attempts to use several

types of proprietary test tools in an effort to satisfy such

requests. The authors discuss a set of limitations encountered

along the way.

Part of the paper discusses some basic aspects of stock

exchange architecture and functionalities and ways to obtain

activity logs from large scale trading systems. Part III outlines

the main characteristics of three in-house test automation

tools: Sailfish, Load Injector and Mini-Robots. The last part

contains the analysis of the authors’ observations in the course

of the mentioned experiments.

II. Securities Exchange Technology Platform
The authors believe that his part may be useful for

researches and industry practitioners working in test tools and

electronic trading areas as an overview of exchange systems

architecture and a description of test tools types used in this

domain. Security exchanges are at the very foundation of the

modern markets, but their architectures are not covered in

research publications. The authors attempt to list key

electronic exchange components and their interaction. This

overview is not based on any particular system, but rather

aggregates knowledge obtained through many engagements

targeted at verifying modern and most advanced trading

platforms.

We are providing a very simplistic view of the trading flow.

The benefit is that it clearly shows the interface between the

client and the exchange, which, effectively, is the entry and

exit point for messages sent and received by the client. The

messages reach the access point, get routed within the

exchange and finally get into the matching engine which

reports back to the access point and eventually the client. The

natural first thought is to somehow capture the flow from the

access points. Generally, there are two options: either the

access point logs or the network capture. Neither of the

options is ideal: quite often, the log level on access points is

mailto:anna.khristenok@exactprosystems.com
mailto:tatiana.pavlyuk@exactprosystems.com
mailto:iosif.itkin@exactpro.com

set to Minimal to improve performance and network capture is

not packet loss free.

Also Fig. 1 helps understand the scalability approach to the

trading systems. Normally, there are multiple processing

layers to allow for load balancing and initial hot redundancy,

as well as mirrors to the key components on, in some cases,

the whole system in a stand-by mode acting as a mirror to the

primary one. Exchange systems can be scaled by distributing

participants between different access points. Exchange

systems scalability by instruments is possible if the traded

securities are independent from each other. Any intersections

like strategies or shared risk limits can dramatically reduce the

potential for horizontal scalability.

Fig. 1. Processing tiers and horizontal scalability approach in

Exchange Systems.
Source: A Cinnober white paper on: Latency [8]

As shown on the diagram, several distributed levels are

involved prior to a point in time when the message reaches the

matching engine core. It means that the data needs to be

collected from many servers and time synchronization

between the boxes becomes a serious issue. Even when timers

of extreme precision and exact inbound sequencing are

established, there is no guarantee that the message that comes

to one access point earlier will get into the matching core

earlier.

The following diagram lists typical components present in a

securities exchange system:

Fig. 2. Typical exchange system components

Access points are represented by Trading and Market Data

Gateways. Clients’ systems connect to them using API or

though the trading desktop. APIs can be implemented as a

network specification or can be provided as a linkable library.

Data record and replay is usually a more complicated process

in the latter case. Trading gateways receive information from

particular participants and send back responses dedicated to

particular participants. Market Data gateways on the other

hand disseminate information market wide. In most cases

generic purpose public market data lacks some of the

information required for replay. In order to monitor trading

activity of the clients or desks within the same trading firm,

participants often use Drop Copy gateways. These gateways

send a copy of all messages received by the monitored

connections. It is possible to use Drop Copy data if it is

configured to track executions for all clients, which is rarely

the case due to performance limitations.

The core of exchange system is a matching engine, the

component responsible for crossing inbound orders and

determining execution prices. The matching engine needs to

sequence all incoming orders prior to determining the crossing

outcome for every inbound event. This sequencing can happen

inside the matching engine or prior to it on the routing and

sequencing level. There are various types of matching cores.

Some are price forming that determine execution prices on the

basis of the orders submitted into the market, others are price

referencing that uses prices produced elsewhere. Hybrid

options are also available, where the prices are formed inside

the exchange but some of the external pricing information is

used, e.g. currency data or interest rates. The component that

provides external pricing information is labeled as Reference

Pricing Server on the diagram. Data replay for price reference

and hybrid markets requires capturing not only client traffic,

but also all external pricing information and its

synchronization.

Some exchange systems not only take prices from external

markets, but pass through inbound client orders when liquidity

is not available on exchange. The component responsible for

the process is called a Smart Order Router (SOR). SOR

checks the liquidity available on other markets and executes

the order in the optimal way. The presence of such a system

broadens the number and complexity of communications

links. Data replay for such a system also becomes a dual-stage

process where the test tools have to submit inbound messages

and afterwards properly react to the outbound messages from

the system.

Once matching engine has determined the crossing

outcome, it is necessary to distribute this information to a

multitude of other components, including: trading and market

data gateways, clearing, market surveillance, data persistence

and warehousing, other post-trade and back office systems,

etc. In order to avoid an extra load on the matching core, a

separate sub-system is usually used for data distribution. The

corresponding component is labeled as the Distribution

System. Sometimes the presence of a dedicated system can

help with data collection for replay.

The diagram shows two components important for data

record and replay: Surveillance System and Data Persistence.

The latter one is required to capture the data for analysis and

reporting. Usually it is implemented as an asynchronous

logging process that stores transactional data in a set of files

later uploaded into a relational database. This data is also

useful to restore the system’s state in case of an outage.

Market surveillance systems are targeted at helping exchanges

to maintain orderly markets by analyzing all events in the

system to check if any of them can represent signs of

malicious participants’ behavior, such as prices or volumes

manipulation, money laundering, front-running, etc. Both Data

Persistence and Surveillance Systems receive information

about all events that are already correctly sequenced. This can

potentially make them a perfect source for data record and

replay. However, most of the time these systems process only

business related data fields and do not store the data related to

the low level networking technicalities.

On the other hand, interface logs and network captures

contain the required low level details, but not necessarily

properly sequenced and timed. The authors consider that in the

future convergence can happen between technical monitoring

and fraud detection [9] and the next generation of the Market

Surveillance systems will capture both business data fields and

low level networking details. This will make them a better

source for data replay activities.

III. Test Automation Tools
There are two types of testing activities required to deliver

software systems: functional testing and non-functional

testing. The goal of functional testing is to verify that a system

satisfies expectations in terms of its functionality. Non-

functional testing is an activity targeted at validating the

attributes of a system that do not relate to functionality, e.g.

reliability, efficiency, usability, maintainability, and

portability. Latency, throughput and capacity are critical non-

functional characteristics the high frequency trading systems.

Functional and non-functional testing are both important for

the orderly functioning of the financial markets.

The authors have participated in a number of projects that

put a series of innovative exchange trading systems live. In the

course of this work, a set of test automation tools was created

to cover all necessary aspects of the quality assurance process.

This part covers three tools:

a) Sailfish – functional testing;

b) Load Injector – load testing;

c) Mini-Robots – testing at the confluence of functional

and non-functional testing.

Sailfish
Sailfish is a test automation tool whose primary target is

testing of bi-directional message flows in distributed trading

platforms and market data delivery systems. It is a back-end

tool that is typically connected to message gateways / APIs

utilized by trading or market data traffic.

The purpose of Sailfish is to minimize manual intervention

required to execute test suites. In its more sophisticated

deployments, Sailfish makes it possible to achieve fully

autonomous scheduled test execution that does not require on-

going operator monitoring.

Sailfish has a modular structure whereby a shared framework

is used in conjunction with specialized plug-ins. Separate

plug-ins are used for each protocol version, including

industry-standard protocols, such as FIX [10], SWIFT [11],

etc., and proprietary protocols.

Test Libraries developed for Sailfish include tests for a variety

of business contexts (Regulated Markets, MTFs, Dark Pools,

Clearing Houses, and Brokerage Systems) realized in a wide

range of technical and middle-ware infrastructures.

Sailfish is a simple keyword-driven test tool. Test scripts are

specified in Comma Separated Values (.CSV) format. Each

line in the file contains one of the following:

 Send valid and invalid messages into system under

test;

 Compare received messages with a filter and create a

report with comparison results;

 Synchronization points and test cases start/stop

markets;

 Wait for a predefined number of milliseconds

between these types of actions.

Every keyword has its corresponding action implemented as a

Java class. Parameters from each line are passed to the class

for processing. Parameters can be in a form of constant values,

java functions, and references to the values in previous steps.

Fig. 3. A generic representation of Sailfish

To turn production data into Sailfish test scenarios, one needs

to generate a set of .csv files. Outbound messages are

translated into Send actions, inbound messages are translated

into Receive and Compare actions. The key challenges with

replaying the data are:

a) Efficient usage of the functions and references;

b) Correct specification of synchronization points and

wait times.

Functions are required to provide values for the fields that

can’t be used as constants during replay, e.g. timestamps and

unique client order identifiers. References are required when

outbound messages need to refer to some inbound data, e.g.

generated internal exchange identifiers. Synchronization

points are responsible for splitting message flow between test

cases and ensuring correct sequence of events for concurrent

messages. The following table summarizes the main

characteristics of Sailfish:

Capacity &

Precision

Throughput 40 transactions per second with validations / 800 in

performance mode. Time precision ~25-50 ms

Testing Type Active Real-Time

Target SUT Trading Platforms, Market Data Delivery and Post-Trade Systems

SUT Interface Back-end (typically connected to message gateways / APIs, and

DBs); GUI Testing Capabilities supported via plug-ins to other

tools (e.g., Selenium)

SUT Interaction

Method

Message injection and capture for testing of real-time low-latency

bi-directional message flows; DB queries for data verification

Protocols Extant plug-ins for Industry-standard (FIX and dialects, FAST,

SWIFT, ITCH, HTTP, SOAP, etc.) and Proprietary (MIT, SAIL,

HSVF, RTF, RV, Reuters, Fidessa OA, Quant House, etc.)

protocols. New plug-ins for additional protocols developed by

request (shared between Sailfish and Shsha)

Test Scripts Human-readable CSV files; scripts generated manually by test

analysts or automatically by test script generator using results of

passive testing performed by other tool (e.g., Shsha)

Test

Management,

Execution and

Reporting

Integrated (Web front-end), allows for multiple simultaneous

heterogeneous connections, consecutive execution of multiple

planned scripts, test results summary and detailed test reports.

REST API supports remote control of Sailfish instances. Optional

Big Button framework supported

Platform

requirements

Written in Java. Low footprint cross-platform application,

MySQL or other RDBMS

Fig. 4. The main characteristics of Sailfish

Load Injector
Load Injector is a powerful load generator targeted at stressing

scalable high load trading infrastructures [12]. Load Injector

supports FIX (all versions), ITCH, LSE, Native, SOLA SAIL

& HSVF, HTTP, SOAP, and various binary trading systems

protocols. The tool’s architecture allows flexible expansion

into additional protocols.

Load Injector is an open-cycle load generator capable of

supporting both model and measurement approaches of

performance testing.

The tool relies on a set of methods to increase its efficiency:

a) managing the executed threads via a central controller

b) using pre-configured templates for generating

message streams

c) coordinated processing of data obtained from a

reverse data stream

Fig. 5. A generic representation of Load Injector

Due to performance requirements, Load Injector is not capable

of transforming CSV or other data format into messages due

to related overhead. That is why Load Injector relies on a set

of raw data files that contain messages to be sent. It is

necessary to perform minimal required modifications of the

messages to be sent, such as timestamps, unique client order

identifiers, checksums and other related fields. As in Sailfish,

it is sometimes necessary to base outbound messages on

inbound data. The process is implemented in an efficient

manner via a centralized reversed data processing loop. Any

outbound messages modifications and inbound messages

processing required for successful data replay had to be

implemented inside the Load Injector source code instead of

the test scripts. This introduces additional difficulties in

comparison to a functional testing tool. The following table

summarizes the main characteristics of Load Injector:

Item Description

Capacity &

Precision

Throughput up to 75,000 msg per core per second. Total

capacity hundreds of thousands messages per second.

Precision is in microsecond range.

Testing Type Active Load and Non Functional Testing

Target SUT Trading Platforms, Market Data Delivery and Post-Trade

Systems and their combinations

SUT Interface Back-end (typically connected to message gateways / APIs;

data streams generation: mcast/ucast); GUI Testing

Capabilities not supported

SUT Interaction

Method

Inputs and outputs are generated based on the configured load

shapes, parameters and templates. Captured messages can be

viewed and analyzed post-factum using the DB queries

(Shsha) or/and performance calculator tool (also developed

by Exactpro)

Protocols Extant plug-ins for Industry-standard (FIX and dialects,

FAST, ITCH, etc.) and Proprietary (MIT, SAIL, HSVF, RTF,

RV, Quant House, etc.) protocols. New plug-ins for

additional protocols developed by request

Test Scripts Capable to stress the system with high rate of transactions

including microbursts. Used for Throughput, Bandwidth,

Latency tests. Can be used for support of fault tolerance

(Failover) tests

Test

Management,

Execution and

Reporting

Simulation of multiple client connections with specified load

shape for each connection or group of connections (configure

number of connections, messages templates, Load Shape for

each connection or group of connections, messages

distribution for each connection or group of connections)

Simulation of market data streams with required SLAs

Platform

requirements

Written in C++. Linux on 64-bit platform

Fig. 6. The main characteristics of Load Injector

Mini-Robots
Some defects are located on the border of functional and non-

functional testing (for example, complex race conditions

scenarios). It is difficult to catch such defects using ordinary

functional test automation or load generation tools. The test

tool named Mini-Robots is targeted at addressing these

limitations over the course of conducting testing of trading

systems. In a nutshell, this testing tool finds its place in

between Sailfish, a functional testing tool, and Load Injector, a

non-functional testing tool. The Mini-Robots tool has been

developed with the idea to simulate real traders’ behavior, i.e.

reacting to specific market conditions in a common fashion,

but, on the other hand, having a certain degree of freedom of

how to react. Each of the robots acts independently and can

execute a particular trading strategy or simply replay a stored

list of orders. Mini-Robots uses realistic gateways to establish

connectivity with the systems under test [13].

Fig. 7. A generic representation of Mini-Robots

The following table summarizes the main characteristics of

Mini-Robots:

Item Description

Capacity &

Precision

Hundreds – thousands of messages depending on the

algorithm complexity. Millisecond precision

Testing Type Active Multi-Participants (applicable for testing at the

confluence of functional and non-functional testing)

Target SUT Trading Platforms and Market Data Delivery Systems

SUT Interface Back-end (typically connected to message gateways / APIs);

GUI Testing Capabilities not supported

SUT Interaction

Method

Message injection and capture to emulate multiple

participants’ activity in electronic markets (essential when

there is a need to reproduce complex scenarios that can be

created by trading algorithms)

Protocols Extant plug-ins for Industry-standard (FIX and dialects, etc.)

and proprietary protocols. New plug-ins for additional

protocols developed by request

Test Scripts Multi-threaded Java code specifying different liquidity

profiles

Test

Management,

Execution and

Reporting

Integrated (Web front-end), allows for multiple

simultaneous heterogeneous connections, concurrent

emulation of multiple participants, detailed test reports.

Optional Big Button framework supported

Platform

requirements

Written in Java

Fig. 8. The main characteristics of Mini-Robots

Outbound messages based on an inbound flow are

incorporated into Mini-Robots as they are similar to ordinary

algorithmic trading systems, and, as such, maintain received

data in a way required to send order amends/cancellation and

are able to react on fill and market data signals.

Test Tools Applicability Comparison
The following diagram contains a summary of using the test

tools:

Fig. 9. Test tool usage summary

IV. Replicating Trading Scenarios and Full

Day Production Logs
The authors have used the three tools to test various

matching engines across different asset types, including

equities, listed derivatives, FX and interest rate swaps. The test

tools were connected to the systems using FIX, ITCH [14] and

a set of proprietary binary protocols. Another testing tool

named Shsha [15] developed by Exactpro was used to turn

production data into test cases for the tools. The authors and

Exactpro QA teams have tried all sources of production data

referred in Part II (interface logs, network captures, and

surveillance/drop copy feeds) to produce test cases describing

production activity.

There are three levels of complexity in matching engines

behavior and corresponding challenges related to the order

book replay:

a) Simple – confined order book independent for each

instrument. This is usualy true for European lit cash markets

b) Reference price - instrument independent from each

other that should take into account prices from some external

market data feed. It is true for European dark cash markets

c) Strategies – multi-leg instruments and strategies,

such as spreads, butterflies, condors, etc. Due to the presence

of the strategies, instruments are no longer independent and

any movement for a single instrument can result in changes

across many other instruments through implied liquidity.

North American markets introduce an extra level of

complexity due to the necessity of passing through to other

markets orders that could not be executed within the National

Best Bid Offer (NBBO) [16]. Record replay for such markets

requires simulating both inbound and outbound SOR

endpoints.

As expected, higher order book complexity results in extra

challenges in order book replay. The ability to segregate the

data by instrument can substantially reduce the volume of data

that needs to be replayed in order to reproduce the order book

state. Thus, replay techniques have appeared to be much more

stable for confined central order books in contrast to

interconnected strategy instruments with implied liquidity and

reference price feeds.

The tests confirmed that it is possible to use all three tools to

recreate steps for most of the observed failures. However,

experiments also show that there is a decent chance of any

given failure and that the data replay will not recreate the

exact sequence of events at the first attempt. As expected,

time sequencing of the events in distributed systems can be

unreliable [17].

The first challenge is the precision of the injection process

itself. Clearly, more light-weight injector written in C++

(Load Injector) is capable of obtaining better precision of the

inbound flow. Load Injector works in a microsecond range.

Mini-Robots have milliseconds precision, while the precision

of Sailfish is at least an order of magnitude worse. Repeated

experiments show that this factor is important to reproduce

race-conditions and similar problems during micro-bursts. It

turned out that the precision of Load Injector and Mini-Robots

is sufficient to reproduce all scenarios encountered in practice.

Test tool precision has three main aspects:

a) Logical events sequencing

b) Time scale

c) Absolute physical time

The first aspect is important for any given scenario as the state

of the order book and execution prices depend on the

sequence of orders arriving on the market. A single recording

can result in several replay options for the concurrent cases

due to the proximity of outgoing and incoming messages. The

time scale aspect is important for concurrency scenarios

executed within the time frames comparable to internal

processing delays, e.g. within a millisecond. Apart from the

simplest market structures, there are many cases where

absolute timing becomes important. The main ones are the

trading cycle transitions, such as market opening/closing, and

good till time orders.

The ability of replicating recorded events precisely is also

severely affected by non-deterministic factors present in the

modern exchange systems. To promote market fairness and

reduce the space for manipulation, many exchange systems

introduce random uncrossing times for auctions and circuit

breakers [18], green rooms [19], etc.

Inconsistent data replay is not really a problem for issue

reproduction. Test automation tools enable one to repeat the

sequence a reasonable number of times to trigger the required

failure mode. The situation appears to be different when one

tries to apply replay to the whole trading operational day.

Even 99% percent replay stability for a single scenario means

a certain deviation in case of hundreds of thousands of

transactions per instrument. Wrong event sequencing can have

a profound effect on the order book status and behavior, a.k.a.

phase transition. For example, it can easily trigger a volatility

interruption that will last for several minutes [20].

In course of the work, a few approaches were used to

decrease the possibility of phase transitions and bring the test

replay closer to original recordings:

a) Tweaking exchange systems parameters responsible

for circuit-breakers and other macro changes in behavior, e.g.

increase price boundaries;

b) Using inbound market data to change the prices of

outbound messages;

c) Using risk control software to filter inbound

messages that can cause volatility interuption;

d) Adding extra liquidity after submitting recorded

messages to bring the order book state towards original

execution pattern.

The first approach appeared to be the simplest one and,

surprisingly, a very effective one in providing reasonable

stability of replay over the course of the day. The latter

approach is the most complex. It was implemented using

Mini-Robots. It was easy to implement market data changes in

both Sailfish and Mini-Robots as they are designed to use

inbound information from the system to structure consequent

messages. However, Sailfish replay is only applicable to less

scalable systems as it has reasonably low performance. Load

Injector, on the other hand, has limitless inbound capacity, but

requires extra effort to have market data changes used by the

feedback mechanism. Despite the fact that all these methods

improve the entire day stability, they result in replaying

different messages into a system that is different from the one

used to perform recordings.

The authors have also analyzed the effectiveness of the full

production day replay as a regression testing tool. It has been

determined that any given trading day contains a small

percentage of functional test libraries and scenario

permutations from those used by QA teams to verify the

systems. From the non-functional testing point of view, it is

worth mentioning that volumes observed during the better part

of the trading day are far away from the peak systems’

throughput. The replay of the daily trading activity results in

an inefficient usage of the scalable test system to cover a

limited portion of available test scenarios. Moreover, changes

in protocol specifications or market rules immediately make

available recordings invalid for precise data replay.

II. Conclusion
Tests executed in scope of described work confirm that one

hundred percent log replication is extremely difficult via

external gateways even for the simple market structures and

asset types. The following is required to ensure precise event

replication:

a) Synchronized inbound data feeds;

b) Control over events sequencing within a distributed

trading system, the ability to re-order events across

gateways and internal components;

c) The ability to replace physical timing with logical

timing;

d) The ability to intervene at original time scale;

e) Control over non-deterministic nature of the trading

system.

Clearly, such instrumentation introduced into low-latency

system’s core will dramatically modify its behavior.

Additional studies of the reference systems with access to

their source code and architecture are required to quantify the

impact of instrumentation. A more precise data replay might

be useful to reproduce the failures. However, the authors

believe that attempts to replicate the full trading day bring an

unsatisfactory return on investment.

References

[1] The Government Office for Science foresight: The Future

of Computer Trading in Financial Markets, 2012

Final Project Report

http://www.bis.gov.uk/assets/foresight/docs/computer-

trading/12-1086-future-of-computer- trading-in-financial-

markets-report.pdf

[2] K. Balck, O. Grinchtein, J. Pearson, Model-based protocol

log generation for testing a telecommunication test harness

using CLP. DATE '14: Proceedings of the conference on

Design, Automation & Test in Europe, European Design

and Automation Association, 2014

[3] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M.

Nasser, P. Flora, Continuous validation of load test suites.

ICPE '14: Proceedings of the 5th ACM/SPEC international

conference on Performance engineering, 2014

[4] R. Ramler, W. Putschögl, D. Winkler, Automated testing

of industrial automation software: practical receipts and

lessons learned. MoSEMInA: Proceedings of the 1st

International Workshop on Modern Software Engineering

Methods for Industrial Automation, 2014

[5] J. Chow, D. Lucchetti, T. Garfinkel, G. Lefebvre, R.

Gardner, J. Mason, S. Small, P. M. Chen, Multi-stage

replay with crosscut. VEE '10: Proceedings of the 6th

ACM SIGPLAN/SIGOPS international conference on

Virtual execution environments, 2014

[6] S. Y. Wang, H. Patil, C. Pereira, G. Lueck, R. Gupta, I.

Neamtiu, Deterministic Replay based Cyclic Debugging

with Dynamic. CGO '14: Proceedings of Annual

IEEE/ACM International Symposium on Code Generation

and Optimization, 2014

[7] N. Viennot, S. Nair, J. Nieh, Transparent mutable replay

for multicore debugging and patch validation. ASPLOS

'13: Proceedings of the eighteenth international conference

on Architectural support for programming languages and

operating systems, 2013

[8] A Cinnober white paper on: Latency October 2009 update

 http://www.cinnober.com/sites/default/files/news/Latency_

revisited.pdf

[9] I. Itkin, N. Pryadkina, A. Kryukov, Data Analysis in

Highload Trading Systems, AIST Conference: Analysis of

images, social networks, and texts, 2013

 http://clubqa.ru/blogs/?p=436, AIST-2013

http://www.bis.gov.uk/assets/foresight/docs/computer-trading/12-1086-future-of-computer-%20trading-in-financial-markets-report.pdf
http://www.bis.gov.uk/assets/foresight/docs/computer-trading/12-1086-future-of-computer-%20trading-in-financial-markets-report.pdf
http://www.bis.gov.uk/assets/foresight/docs/computer-trading/12-1086-future-of-computer-%20trading-in-financial-markets-report.pdf
http://www.cinnober.com/sites/default/files/news/Latency_revisited.pdf
http://www.cinnober.com/sites/default/files/news/Latency_revisited.pdf
http://clubqa.ru/blogs/?p=436,%20AIST-2013

[10] FIX Trading Community

http://www.fixtradingcommunity.org/

[11] ISO 20022 Universal financial industry message scheme,

About ISO 20022

http://www.iso20022.org/about_iso20022.page

[12] D. Guriev, M. Gai, I. Itkin, A. Terentiev, High

Performance Load Generator for Automated Trading

Systems Testing, Tools & Methods of Program Analysis

2013

[13] A. Matveeva, N. Antonov, I. Itkin, The Specifics of Test

Tools Used in Trading Systems Production Environments,

Tools & Methods of Program Analysis 2013

[14] M. Sherman, P. Sood, K. Wong, A. Iakovlev, N.

Parashar, Building the Book: A Full-Hardware Nasdaq Itch

Ticker Plant on Solarflare’s AoE FPGA Board, May 2013

http://www.cs.columbia.edu/~sedwards/classes/2013/4840/

reports/Itch.pdf, 2013

[15] A. Alexeenko, P. Protsenko, A. Matveeva, I. Itkin, D.

Sharov, Compatibility Testing of Protocol Connections of

Exchange and Broker Systems Clients, Tools & Methods of

Program Analysis 2013

[16] SEC Release No. 34-51808, Regulation NMS

 http://www.sec.gov/rules/final/34-51808.pdf, 2005

[17] L. Lamport Massachusetts Computer Associates Inc.,

Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM,issue 21(7), pp. 558–

565, July, 1978.

 http://web.stanford.edu/class/cs240/readings/lamport.pdf

[18] U.S. Securities and Exchange Commission, New Stock-

by-Stock Circuit Breakers

http://www.sec.gov/investor/alerts/circuitbreakers.htm

[19] E. Holley Senior Staff Writer at Banking Technology,

Banking Technology, Tradition FX platform cuts out HFT

‘predators’ http://www.bankingtech.com/64201/tradition-

fx-platform-cuts-out-hft-

%E2%80%98predators%E2%80%99/, 2013

[20] LSEG Response to ESMA Consultation: Guidelines on

systems and controls in a highly automated trading

environment for trading platforms, investment firms and

competent authorities, ESMA/2011/224 , October 2011

 http://www.londonstockexchange.com/about-the-

exchange/regulatory/lsegresponsetoesmaconsultationonsyst

emsandcontrols.pdf

http://www.fixtradingcommunity.org/
http://www.iso20022.org/about_iso20022.page
http://www.cs.columbia.edu/~sedwards/classes/2013/4840/reports/Itch.pdf
http://www.cs.columbia.edu/~sedwards/classes/2013/4840/reports/Itch.pdf
http://www.sec.gov/rules/final/34-51808.pdf
http://web.stanford.edu/class/cs240/readings/lamport.pdf
http://www.sec.gov/investor/alerts/circuitbreakers.htm
http://www.bankingtech.com/64201/tradition-fx-platform-cuts-out-hft-‘predators’/
http://www.bankingtech.com/64201/tradition-fx-platform-cuts-out-hft-‘predators’/
http://www.bankingtech.com/64201/tradition-fx-platform-cuts-out-hft-‘predators’/
http://www.londonstockexchange.com/about-the-exchange/regulatory/lsegresponsetoesmaconsultationonsystemsandcontrols.pdf
http://www.londonstockexchange.com/about-the-exchange/regulatory/lsegresponsetoesmaconsultationonsystemsandcontrols.pdf
http://www.londonstockexchange.com/about-the-exchange/regulatory/lsegresponsetoesmaconsultationonsystemsandcontrols.pdf

