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Abstract—We present a software toolset VERMONT (VERify-
ing MONiTor) for runtime checking the consistency of Software
Defined Network (SDN) configurations with formally specified
invariants of Packet Forwarding Policies (PFPs). One of the
main task of network engineering is to provide such a loading
of SDN switches with forwarding rules as to guarantee its
compliance with the PFP. VERMONT provides some automation
to the solution of this task. Being installed in line with the
control plane it 1) observes state changes of a network by
intercepting the exchange of messages and commands between
network switches and SDN controller, 2) builds an adequate
formal model of a whole network, and 3) checks every event,
such as installation, deletion, or modification of rules, port and
switch up and down events, against a set of PFP invariants.
Before retransmitting a network updating command to a switch
VERMONT anticipates the result of its execution and checks
the requirements of PFP. If a violation of some PFP invariant
is detected then VERMONT blocks the change, alerts a network
administrator, and gives some additional information to elucidate
a possible source of an error. In this paper we discuss both
mathematical and engineering issues of our toolset. We begin
with defining a formal model of SDN and a formal language
for PFP specification. After presenting the main algorithms used
in VERMONT for SDN model building, model checking, and
model modification, we describe the structure of VERMONT and
the functionality of its components. Finally, we demonstrate the
results of our experiments on the application of VERMONT to
a real-life network.

Keywords—runtime verification, formal specification, model
checking, software defined network, controller, switch, packet for-
warding relation, Binary Decision Diagram, network update

I. INTRODUCTION

Runtime verification is an approach to computing system
analysis and verification based on extracting information,
checking required properties and possibly reacting on the
violation of some requirements in the course of system execu-
tion. Like bounded model checking it is intermediate between
complete formal verification of a program and its testing.
Runtime verification can be used for many purposes, such
as security or safety policy monitoring, debugging, testing,
verification, validation, profiling, fault protection, behavior
modification (e.g., recovery), etc.

Runtime verification has some advantages over complete
formal verification. It avoids the complexity of traditional
formal verification techniques, such as model checking and
theorem proving, by analyzing only one or a few execution
traces. Usually a runtime verifier works directly with the
actual system; thus, it scales up relatively well and gives
more confidence in the results of the analysis. Moreover,
runtime verification can be performed even when there is no
access to the source code of the computing systems to be
verified. On the other hand, a runtime verifier operates with
formally specified properties of system behaviour and uses
formal methods for analyzing program executions presented as
traces, snapshots, etc. This allows one to achieve a far more
substantial understanding of system behaviour as compared
with normal testing. No wonder that these nice features of
runtime verification make this approach much favor in using
it for verification and analysis of the behaviour of reactive
systems, such as network protocols.

In this paper we present a VERifying MONiTor (VER-
MONT) which is a toolset for runtime verification of Software
Defined Networks (SDNs) against formally specified invariants
of Packet Forwarding Policies (PFP). VERMONT is intended
for preventing SDN controllers from sending incorrect network
updating commands to SDN switches. Speaking figuratively,
VERMONT is a fully automatic ”watchdog” for SDNs.

The paper is organized as follows. In Section 2 we briefly
outlook the key principles of SDN paradigm, the purpose
and functionality of SDN components — forwarding rules,
reconfiguration commands, switches, and a controller, — and
discuss the known approaches and techniques used in SDN
verification. In Section 3 and 4 we introduce a relational formal
model for SDN configurations and present a formal language
for PFP specifications. In Section 5 we discuss three main
tasks to be solved for runtime verification of SDNs, namely,
model building, model checking, and model updating, and
describe in some details the algorithms used in VERMONT
for the solution of these tasks. The runtime verification toolset
VERMONT, its structure and functionality are described in
Section 7. And, finally, in Conclusion we demonstrate some
results of our experiments with VERMONT and compare our
toolset with other SDN verification tools.



II. SOFTWARE DEFINED NETWORKS

Until recently all computer-based telecommunication net-
works have been built out of special-purpose hardware com-
ponents (routers, switches, firewalls, gateways, etc.). These
devices run a hierarchy of distributed algorithms to provide
such functionality as topological discovering, routing, traffic
monitoring and balancing, access control, etc. Networks of
this kind are managed through a set of complex heterogeneous
interfaces used to configure separately the network devices.
This is a complex and error-prone activity which becomes
the most severe obstacle in the development of novel network
technologies such as data centers and cloud computing.

To cope with these principal difficulties a new kind of
network architecture — Software Defined Networks (SDN)
— has emerged some years ago [1]. The most remarkable
distinguished feature of SDN architecture is that the data plane
and the control plane of a network are separated from each
other. We use OpenFlow [2] as the most developed standard
for SDNs to give a brief overview of basic principles of SDN
structure and functionality. SDN switches are connected with
each other via their ports through datapath channels. Only
data packets commuted by SDN switches are transmitted via
datapath channels. Every switch processes packets that enter
its ports; packet processing is guided by a flow-table — a set
of packet forwarding rules. In general case a switch may have
a whole pipeline of flow-tables. A forwarding rule includes a
pattern, an instruction, a priority, a counter, and a time-out. A
packet consists of a header and a payload, but only its header
is taken into account when the packet is processed by a switch.
When a switch receives a packet it matches its header against
the patterns of forwarding rules. If several different rules match
a packet then the rule with the highest priority is triggered. If
no rules match a packet then a default rule is invoked. When
a rule is triggered its instruction takes effect. An instruction is
a list of actions. Typical actions include forwarding a copy of
the packet out of one of the ports on the switch, dropping the
packet, forwarding the packet to the controller for a in-depth
analysis and processing, or rewriting some header fields. As
soon as a rule completes processing of a packet it increments
the counter. A packet forwarding rule is removed from the
table at the expiration of its timeout.

SDN switches are managed by a centralized controller
which is a general purpose machine capable of performing
arbitrary computation. SDN controller communicates with
every switch via a control channel. Through this channel
the controller keeps track of the current configuration of the
networks by receiving messages from switches and configures
the network by sending commands to switches. The received
messages include all packets forwarded to the controller,
statistics (the number of packets processed by specified rules),
notification about the removing of certain rules from flow
tables, and switch status information. By sending commands
to switches the controller is able to add, delete and modify
certain packet forwarding rules in flow tables, to request some
information from a switch (configuration, capabilities, statistics
of the activity of certain rules), or to send definite packets from
specified ports of a switch. More details on the concept of SDN
and its implementation can be found in [2].

The main advantage of this network architecture is that
programmers are able to control the behaviour of the whole

network by installing, disabling, and modifying the packet
forwarding rules in the flow tables of the switches. Therefore,
SDNs can both simplify existing network applications and
serve as a platform for developing new ones (see [3]). As soon
as the concept of SDN emerged, a number of projects on the
development of languages and tools for SDN programming
have been launched: Frenetic [4], Maestro [5], Procera [6],
Nettle [7]. But for SDNs as for any information processing
system bugs remain problematic. A wide range of requirements
may be imposed upon a communication network to guarantee
its correct, safe and secure behaviour. While interacting with
the switches the controller must provide a Packet Forwarding
Policy (PFP) — a desirable communication between the nodes
of a network. Certain packets have to reach their destination,
whereas some other packets have to be dropped. Certain
switches are forbidden for some packets, whereas some other
switches have to be obligatorily traversed. Loops are not
allowed. The software applications that operate on a SDN
controller and manage a network have to provide such a
loading of flow tables with forwarding rules as to guarantee
compliance with a given PFP.

A wide diversity of communication networks that differ in
their purpose, structure, characteristics together with endless
variety of possible PFP requirements make the development of
universal system for translating PFP requirements into effective
network managing programs impossible in the nearest future.
SDN programming will most likely follow the same way as
traditional software engineering: high-level SDN programming
languages will be developed to facilitate the work of network
managers, and a broad range of software tools will be built
to provide the designing of correct and efficient SDN control
applications. These tools require certain formal techniques
for the solution of such well known problems as software
compilation, debugging, testing, simulation, etc.

One of the problems to be solved in our intention to
guarantee the correctness of SDN control is that of SDN
verification against a PFP: given a formally specified PFP Φ, a
formal model of SDN M , and an initial network configurations
N check that all runs of M on N satisfy Φ. The solution is to
develop a toolset which could be able 1) to check correctness
of a separate application operating on the controller w.r.t. a
specified PFP, 2) to check consistency of PFPs implemented
by the whole set of applications, and 3) to monitor and check
correctness and safety of the entire SDN.

Formal methods have been widely used for verification of
traditional networks and network protocols (see [8], [9], [10]),
but the interest to verification issues in telecommunication
networks burst as the SDN concept appeared. Since the first
paper on this topic [11] a number of approaches and techniques
have been introduced and implemented. Roughly, they can be
divided into two main classes: control plane verification and
data plane verification.

Control plane verification focuses on testing and veri-
fying SDN controllers and their software applications. For
this purpose model checking, theorem proving, static analysis
and their combinations are used. Canini et al. [12] have
proposed a symbolic execution and model checking based
NICE framework for catching bugs which works by exploring
symbolically all possible code paths in SDN program modeled
as a finite state transition system. But experiments showed



that this approach is efficient only for rather small networks;
therefore, NICE was extended to perform concoling testing
to reduce the number of missed bugs [13]. Model checking
approach based on data state and network state abstractions
has been used in [14] for verification of SDN controllers. But
the most remarkable paper in this line of research is [15]. In
this paper Ball et al. presented the first system for verifying
correctness of SDN program on all admissible topologies and
for all possible sequences of network events. First-order logic
is used to specify admissible network topologies and desired
network-wide invariants, verification procedure is based on
classical Floyd-Hoare-Dijkstra deductive approach supported
by an automated theorem prover Z3.

As for SDN data plane verification, various approaches
have been proposed to solve this task. At the beginning the
researchers designed only static checking tools which take
snapshots of network configurations, regard them as finite
state transition systems, and check their properties (reach-
ability analysis, loop detection, etc.) off-line using various
model checking techniques — BDD-based model checking
(FlowChecker [16]), SAT solving (Anteater [17]), manipula-
tions with DNFs (Hassel [18]). At the next step various real-
time dynamic checking tools have been proposed: VeriFlow
[19], NetPlumber [20], AP-Verifier [21]. VeriFlow tool verifies
network invariants — e.g., lack of access control violations,
absence of routing loops, blackholes, etc. — in real time and
presents a diagnostic report in case of a violation. NetPlumber
tool uses a novel header space analysis for performing a real
time PFP checking. The authors of AP-Verifier reduce the set
of predicates representing patterns of packet forwarding rules
to a set of atomic predicates that is provably both minimum
and unique, which can be used to dramatically improve the
computation of network reachability.

The verification systems of next generation — VeriFlow,
NetPlumber, AP-Verifier — are real-time (runtime) checkers;
they are not only able to check formal models of SDNs
against formal PFP specifications, but to modify promptly
SDN models in response to such events as flow table update
by reconfiguration commands, expiration of forwarding rules’
timeouts, etc. To achieve high speed of model modification
the authors of these runtime verification systems turn to the
explicit (enumerative) representations of SDN models and
avoid using symbolic computations. As a result, such systems
are able to check only restricted class of PFP requirements and
they suffer from state explosion effect.

As for PFP specification languages, almost all verification
systems mentioned above use temporal logics CTL or LTL
for this purpose. The only known exception is NetPlumber; its
PFP specification language is based on regular expressions. We
think this choice is not adequate to the problem of SDN data
plane verification, since both temporal logics and regular ex-
pressions are more suitable to express the properties of process
evolutions proceeded in time, whereas SDN configurations are
static objects whose semantics can be defined not in terms of
computations, but by means of packet forwarding relations.

VERMONT is also a SDN data plane runtime verification
system. Its distinguished features are as follows.

1) In contrast with VeriFlow, NetPlumber, and AP-
Verifier, it uses BDDs for representation of SDN

formal models and symbolic computations for their
checking. BDD-based techniques makes our system
far less sensitive to the size of SDN configurations to
be checked.

2) Unlike FlowChecker, it is supplied with procedures
for fast modification of SDN models and may be
used for runtime (”dynamic”) verification. We show
that these procedures work rather efficient for SDN
models represented by BDDs.

3) Its PFP specification language is based on the frag-
ment of second order logic. This formal language is
far more expressive than those used the verification
systems referred above.

In Conclusion we show that VERMONT may find an in-
termediate position among the SDN data plane verification
systems. Its performance exceeds that of ”static” SDN data
plane verifiers (FlowChecker, Anteater, Hassel) and remains
only little behind the speed of such ”dynamic” verifiers as
FlowChecker and NetPlumber, while its PFP specification
language encompasses all properties of SDN configurations
that can be checked by all other verification systems.

III. NETWORK MODEL

In this Section we define a relational formal model of SDN
configurations which is used in VERMONT for SDN data
plane runtime verification. In this model all components of
SDN configuration are presented either by Boolean vectors, or
by binary relations on the sets of Boolean vectors. This formal
model of SDN has been presented in [22]; it has been used
also in [23] for the study of Network Updating Problems.

Packet header is a Boolean vector h = (h1, h2, . . . , hN ).
All headers have the same length N and the set of all packet
headers is denoted by H. Components of a header h are
denoted by h[i], 1 ≤ i ≤ N . The length of packet headers may
vary depending on network protocols, types of network, etc;
e.g. the IPv4 packet header consists of 160 bits but optional
fields for flags, tags, counters can be added.

Switch port is a Boolean vector p = (p0, p1, . . . , pk). Its
components are denoted by p[i], 0 ≤ i ≤ k. If p[0] = 1
then p is an input port, otherwise it is an output port. All
switches in the network are assumed to be identical and have
the same number of ports. The set of all ports, input ports,
and output ports of a switch is denoted by P , IP , and OP ,
respectively. The output port drop = (0, 0, . . . , 0) is viewed
as a drop port; at arriving to this port the packets are dropped.
The output port octrl = 〈0, 1, 1, . . . , 1〉 is the control output
port; at arriving to this port the packets are sent to a controller.
The input port ictrl = 〈1, 1, 1, . . . , 1〉 is the control input port;
only commands and messages from the controller come to this
port.

All network switches are enumerated. The name of every
switch is a Boolean vector w = (w1, w2, . . . , wm). Its com-
ponents are denoted by w[i], 0 ≤ i ≤ m. The set of such
vectors is denoted by W .

Let h ∈ H, p ∈ P, w ∈ W . Then a pair 〈h,p〉 is called a
local packet state, a pair 〈p,w〉 is called a network point, and
a triple 〈h,p,w〉 is called a packet state. The set of all packet
states is denoted by S. Given a packet state s = 〈h,p,w〉 we
denote its components by s.hd, s.pt, and s.sw respectively.



A header pattern is a vector z = (σ1, σ2, . . . , σN ), where
σi ∈ {0, 1, ∗}, 1 ≤ i ≤ N . A port pattern is a vector y =
(δ1, δ2, . . . , δk), where δi ∈ {0, 1, ∗}, 1 ≤ i ≤ k. Patterns are
used for the selection of appropriate rules from flow tables as
well as for the updating of packet headers.

In our model of SDN we consider two types of ac-
tions defined in OpenFlow protocol [2]: forwarding actions
OUTPUT (p), where p ∈ OP , and header modification
action SET FIELD(z), where z is a header pattern. An
instruction is any finite sequence of actions.

A rule is a tuple r = 〈(z,y), α, `〉), where z,y are header
and port patterns, α is an instruction, and a positive integer `
is a priority of the rule. A flow-table is a pair tab = (D,β),
where D = {r1, r2, . . . , rn} is a set of forwarding rules and β
is a default instruction. A switch applies rules from its flow-
table to those packets which arrive to the input ports of a
switch. If all rules from the set D are inapplicable to a packet
then the default instruction β takes effect. Usually in practice
β just sends the packets to the SDN controller. The set of all
possible flow-tables is denoted by Tab.

As opposed to SDN models introduced in [12], [24], our
model deals with paths in the data plane routed by forwarding
rules (per flow model) rather than with individual packets that
traverse a network of switches (per packet model). Therefore,
the semantics of the SDN model is defined in terms of
packet forwarding relations on packet states and points. These
relations are specified by Quantified Boolean Formulae. To
capture the effect of patterns in forwarding rules we use two
auxiliary functions Uσ(u, v) and Eσ(u), where σ ∈ {0, 1, ∗},
and u, v are Boolean variables, such that

• if σ = ∗, then Uσ(u, v) is u ≡ v and Eσ(u) is 1,

• if σ ∈ {0, 1}, then Uσ(u, v) and Eσ(u) are v ≡ σ.

An action a=OUTPUT (p0) sends packets (not changing
their headers) to the output port p0. It computes the relation

Ra(〈h,p〉, 〈h′,p′〉) = h = h′ ∧ p′ = p0

on the set of local packet states H×P .

An action b = SET FIELD(z) uses a pattern z =
(σ1, . . . , σN ) to modify headers of packets: a bit h[i] in a
header doesn’t change if z = ∗, otherwise it is changed to
z[i]. This action computes the relation on the set H×P:

Rb(〈h,p〉,〈h′,p′〉)=

N∧
i=1

Uσi(h[i],h′[i]) ∧
k∧
i=1

(p[i] ≡ p′[i]) .

An instruction α computes the relation Rα which is a
sequential composition of the relations that correspond to its
actions. If α is empty then a packet by default have to be
dropped, i.e. sent to the port drop. Therefore, we assume that
every instruction always ends with a forwarding action.

A forwarding rule r = (〈z,y〉, α, `) applies the instruction
α to all packets whose port and header match the patterns
y = 〈δ1, . . . , δk〉 and z = 〈σ1, . . . , σN 〉. Its effect is specified
by the relation Rr on the set of local packet states H×P

Rr(〈h,p〉,〈h′,p′〉)=PRCr(〈h,p〉) ∧Rα(〈h,p〉, 〈h′,p′〉) ,

where PRCr(〈h,p〉) =
N∧
j=1

Eσj
(h[j]) ∧

k∧
i=1

Eδi(p[i]) is a

precondition of the rule r.

The semantics of a flow-table tab = (D,β), where D =
{r1, r2, . . . , rn}, is specified by a binary relation as follows.
Let n be the highest priority of the rules from tab. For every
i, 1 ≤ i ≤ n, denote by tabi the set of rules from tab which
have priority i: tabi = {r = (〈z,y〉, α, i) : r ∈ tab}. Then
define recursively (from n down to 1) the pairs of relations
Ritab and Bitab as follows:

Rntab =
∨

r∈tabn
Rr, Bntab =

∨
r∈tabn

PRCr;

Ritab = {(〈h,p〉,〈h′,p′〉) : there exists r in tabi such that

〈h,p〉 /∈ Bi+1
tab and (〈h,p〉,〈h′,p′〉) ∈ Rr}),

Bitab = Bi+1
tab ∨

∨
r∈tabi

PRCr.

Since the missed packets are managed by the default rule
β, we introduce also the predicate

R0
tab(〈h,p〉,〈h′,p′〉) = ¬B1

tab(h,p) ∧Rβ(〈h,p〉,〈h′,p′〉).

Finally, Rtab =
n∨
i=0

Ritab; it means that every packet arrived at

some port of the switch is either processed by the rule of the
highest priority that matches the local state of the packet, or
it is managed by the default rule β of the flow-table.

Network topology is completely defined by a packet trans-
mission relation T ⊆ (OP × W) × (IP × W). Since
wired networks admit only point-to-point connections, T is
an injective function. Network points that are involved in the
relation T are called internal network points; others are called
external network points. We denote by In and Out the sets
of all external input and external output points respectively.
External points of a switch are assumed to be connected to
outer devices (hosts, servers, gateways, etc.) that are out of the
scope of the SDN controller. Packets enter a network through
the input points and leave a network through its output points.

When a set of switchesW and a topology T are fixed then
a network configuration is a total function Net : W → Tab
which assign flow-tables to the switches of the network. The
semantics of a network at a configuration Net is specified
by the 1-hop packet forwarding relation RNet on the set of
(global) packet states S as follows:

RNet(〈h,p,w〉, 〈h′,p′,w′〉) holds iff

• either (〈h,p〉, 〈h′,p′〉) ∈ RNet(w), w = w′, and
〈p′,w〉 ∈ Out (a packet is forwarded to an outer
device connected to an external output port p′ of a
switch w),

• or there exists a port p′′ such that (〈h,p〉, 〈h′,p′′〉) ∈
RNet(w) and (〈p′′,w〉, 〈p′,w′〉) ∈ T (a packet with
possibly changed header is forwarded to an output port
p′′ and then delivered via a communication channel
to an input port p′ of a switch w′).

A relational formal model of SDN configuration Net is a
triple MNet = (RNet, In,Out).



Network configurations alter at the expiry of forwarding
rules’ time-outs, at the shutting down or failure of links, ports,
or switches, and by the network updating commands received
from the controller. OpenFlow protocol [2] includes network
updating commands of the following types:

• add(w, r) to install a forwarding rule r in the flow-
table of a switch w;

• del(w, 〈z,y〉, `) to remove rules from the flow-table
of a switch w: a rule r = (〈z′,y′〉, α,m) is uninstalled
iff m = ` and the pattern 〈z′,y′〉 of the rule matches
the pair 〈z,y〉;

• mod(w, 〈z,y〉, β, `) to modify the rules in the flow-
table of a switch w: if pattern 〈z′,y′〉 of the rule r =
(〈z′,y′〉, α,m) matches the pair 〈z,y〉 and m = `
then the instruction α in such rule is changed to the
instruction β.

As a network updating command is delivered via a control
channel to a switch it fires and changes the flow-table of the
switch by installing, removing or modifying the appropriate
forwarding rules. Formally, we write com(Net) for the new
configuration obtained at the execution of a network updating
command com on a configuration Net.

IV. SPECIFICATION LANGUAGE

PFPs refer to properties of network configurations at some
stages of the SDN behaviour. These properties mostly concern
the paths routed in a network by packet forwarding rules. We
choose first-order logic with two variables and a transitive
closure operator (FO2[TC] in symbols) to specify the proper-
ties of network configurations. Two variables are sufficient for
FO[TC] to embed in it the most of specification languages used
in formal verification such as CTL, LTL, PDL, µ-calculus; our
verification system is able to cope with more variables but
at the sacrifice of certain loss in performance. Our fragment
of FO2[TC] includes only three basic predicates R, I , and O
to denote 1-hop packet forwarding relation and the sets of
incoming and outgoing packet states. Now we consider this
PFP specification language in some more details.

Let V ar = {X,Y } be a set of two variables that are
evaluated over the set S = H × P × W = {0, 1}N+k+m

of packet states. A packet state specification is any Boolean
formula ϕ constructed from a set of Boolean variables X[j]
and Y [j] , 1 ≤ j ≤ N+k+m}, and connectives ¬, ∧, ∨. By
means of these formulae it is possible to express relationships
between the pairs of packet states.

A PFP specification language L is the smallest set of
expressions which satisfies the following requirements:

1) if ϕ is a packet state specification then ϕ ∈ L;

2) if X ′, X ′′ ∈ V ar then R(X ′, X ′′), I(X ′), O(X ′′) are in L;

3) if ψ(X,Y ) is a formula in L and it includes exactly two
distinct free variables then TC(ϕ(X,Y )) ∈ L;

4) if ψ1 and ψ2 are formulae in L1 and X ∈ V ar then the
formulae (¬ψ1), (ψ1∧ψ2), (ψ1∨ψ2), (∃X ψ1), and (∀X ψ1)
are in L.

A PFP specification is any closed formula in L.

The semantics of L is defined as follows. Let Net be a
network configuration, and s = 〈h,p,w〉 and s′ = 〈h′,p′,w′〉
be a pair of packet states. Then

1) MNet |= R(X,Y )[s, s′] iff (s, s′) ∈ RNet;

2) MNet |= I(X)[s] iff 〈p,w〉 ∈ In;

3) MNet |= O(X)[s] iff 〈p,w〉 ∈ Out;

4) MNet |= TC(ϕ(X,Y ))[s, s′] iff there exists a finite non-
empty sequence of packet states s0, s1, . . . , sn such that s0 =
s, sn = s′, and Net |= ϕ[si, si+1] holds for every i, 0 ≤ i < n.

The satisfiability relation for other formulae in L is defined
straightforward as in the first-order logics.

Some simple examples show that L is rather expressive to
formalize PFPs.

1) No loop-holes are reachable from the outside of the network:

¬∃X (I(X) ∧ ∃Y (TC(R(X,Y )) ∧ TC(R(Y, Y )));

2) None of the switches processes packets from both flows
flow1 and flow2:

¬∃X (∃Y (flow1(Y ) ∧ TC(R(Y,X)))∧
∃Y (flow2(Y ) ∧ TC(R(Y,X)))),

where flow1 and flow2 are Boolean formulae which specify
the aforesaid packet flows.

There are several reasons to explain our choice of FO2[TC]
for PFP specification language. In the most papers that study
verification problem for SDN (see [11], [17], [19], [20]) the
authors use temporal logics (LTL or CTL) for PFP specifi-
cation language. This choice is explicable when per-packet
abstraction is concerned since the movement of a packet may
be viewed as a process evolving in time. But inasmuch as
our model has a per-flow abstraction level, temporal logics
become inadequate formalism. As far as we are interested
in the relationships between packet states and routes in the
network configurations, FO2[TC] expresses these properties far
more explicitly. Moreover, as it was shown in [26], [27], LTL,
CTL, µ-calculus, and PDL can be translated in FO2[TC]. This
fragment of 2-nd order logics is well-suited for model check-
ing. As it follows from the results of [25], model checking
problem for FO[TC] is NLOG-complete. The very structure of
FO2[TC] provides a possibility to evaluate it in straightforward
manner on any finite model.

V. MODEL BUILDING, MODEL CHECKING AND MODEL
UPDATING

The aim of runtime verification is to check the correctness
of program behaviour in the course of program execution. In
the framework of our per-flow abstract model of SDN this
problem can be formalized as follows: given an initial network
configuration Net0, a list of PFP formal specifications Φ =
{ϕ1, . . . , ϕn}, and a sequence of network updating commands
α = com1, . . . , comi, . . . , check that for every i, i ≥ 1, a
network configuration Neti = comi(Neti−1) satisfies all PFP
specifications, i.e. all formulae from the list Φ are invariants
of the sequence α.



To cope with this problem one needs some means to solve
three separate tasks:

1) model building: given a network topology T and a
SDN configuration Net build a formal model MNet;

2) model checking: given a formal model MNet and a
PFP specification ϕ check satisfiability MNet |= ϕ;

3) model updating: given a formal model MNet and a
network updating command com build a a formal
model Mcom(Net).

We briefly discuss our approach to the solution of these tasks.

A formal model of SDN configuration MNet is completely
specified by the finite relations RNet, In,Out on the set
of binary vectors (packet states and points). We use Binary
Decision Diagrams (BDDs) to represent finite relations since
BDDs are well-suited for set-theoretic manipulations with such
relations (see [30]). Nowadays many software packages for
computations on BDDs are available; in our project we used
the toolset BuDDy due to its simple and convenient interface.
This toolset provides ample means to solve the model building
task. To this end it is sufficient to compute step by step in a
straightforward way BDDs for all relations (PRCr, Rr, and
Rtab) involved in the definition of RNet (see Section IV). It
is worth noting that such BDDs for different switches can be
computed independently and in parallel.

As for the second task, network model checking, it can be
easily solved as well with the help of BDDs. Every formula ϕ
from the specification language L is presented by an Abstract
Syntax Tree (AST) Tϕ. The leaves of this tree are variables
X and Y , whereas the inner nodes of this tree are basic
predicates R, I,O of L, Boolean operators, quantifiers, and
transitive closure operator TC. To check MNet |= ϕ it is
sufficient to evaluate Tϕ on a model M . Nodes marked with
basic predicates invoke the corresponding BDDs (in some
cases variable renaming may be required). If a node is marked
with a Boolean operator or a quantifier then the corresponding
procedures for manipulations with BDDs is used to assign a
BDD to this node. The only type of node that needs some
specific treatment are those marked with transitive closure
operator TC. To build a BDD for TC(R0), given a BDD
for a binary relation R0, we use the following simple scheme:
compute iteratively BDDs for relations

Ri+1(X,Y ) = ∃Z (Ri(X,Z) ∧Ri(Z, Y ))

until Ri+1 = Ri. This is the most time consuming stage of
AST evaluation and much efforts have been made to implement
it efficiently. Since every specification formula is closed, BDD
assigned to the root of Tϕ is a Boolean constant which
indicates (un)satisfiability of ϕ on M .

Some heuristics are used to reduce the cost of AST evalua-
tion. For example, in practice only some fields (VLAN, coun-
ters, etc.) in packet headers are subjected to SET FIELD
actions. Therefore, a packet header h may be split into two
components h = (h′,h′′), where h′ is composed of those bits
that are not changed. Then 1-hop packet forwarding relation
RNet may be viewed as RNet(h

′
1,h
′′
1 ,p1,w1,h

′′
2 ,p2,w2).

Such a presentation substantially reduces the size of BDDs.

An efficient solution of the third task — model updating
— is crucial for the utility of runtime verification, since the

performance of model updating procedure must be adequate
to the rate of configuration updatings occurred in real-life
networks. Therefore, the using of model building procedures
for model modification is not the best solution. Actually, in
some cases the basic relations in the SDN configuration models
can be modified rather quickly. Since many important PFP
requirements like the absence of loop-holes, reachability of
certain end-points, etc. refer only to a transitive closure of
1-hop packet forwarding relation R+

Net, it is urgent to modify
efficiently this binary relation. Below we show how this can be
done in the case when all rules in the flow tables have the same
priority and a network configuration is updated by commands
add and del that insert and delete packet forwarding rules.

To modify efficiently a formal model of SDN configuration
MNet at the execution of rule insertion command add the
verifier must keep track of BDDs that represent the following
binary relations on the set of packet states:

1) 1-hop packet forwarding relation RNet(s, s′),

2) its transitive closure R+
Net(s, s

′),

3) packet forwarding relations for missed packets

RdefNet(s, s
′) =

∨
w∈W

R0
Net(w)(s, s

′)

for all switches in the network.

Suppose that SDN controller sends an updating command
add(w, r) via a control channel. Then our model modification
procedure build BDDs for the following relations:

1) R̂defNet(s, s
′) = RdefNet(s, s

′) ∧ ¬PRCr(〈s.hd, s.pt〉)

(the installation of a rule r reduces the domain of default
instructions in the flow tables);

2) R̂Net(s, s′)=(RNet(s,s
′)∧¬(RdefNet(s,s

′)∧PRCr(s)))∨

∨ ∃u(Rr(s,u) ∧ (T (u,s′) ∨ (Out(u) ∧ u = s′)))

(the installation of a rule r a) cancels the default instructions
for those packets that fall into the scope of r, and b) extends the
1-hop packet forwarding relation to those packets that match
the pattern of r);

3) R̂+
Net(s, s

′) = (s′ = w ∧R1(s,s′)) ∨ (s′ 6= w ∧R2(s,s′)),

where

R1(s, s′) = ∃u((R+
Net(s,u)∨s = u) ∧ R̂Net(u,s′)),

R2(s, s′) = ∃u((R+
Net(s,u)∨s = u) ∧ ∃v(R̂Net(u,v)∧

∧(R+
Net(v,s

′)∨v = s′))).

Theorem 1. Suppose that Net is an arbitrary SDN configu-
ration such that all forwarding rules have the same priority,
and com = add(w, r) is command which installs a rule of the
same priority. Then Rcom(Net) = R̂Net, R

def
com(Net) = R̂defNet.

Moreover, if Net satisfies the following requirements expressed
by FO2 formulae:

MNet |= ∀X∀Y (RdefNet(X,Y )→ X.pt = octrl)

(every instruction for missed packets directs these packets to
a control output port);



MNet |=¬∃X(X.sw = w ∧ PRCr(〈X.hd,X.pt〉)∧

∧∃Y (R̂Net(X,Y )∧ ∃X(R+
Net(Y,X)∧

∧X.sw = w ∧ PRCr(〈X.hd,X.pt〉))))

(the installation of the rule r into the flow table of the switch
w doesn’t bring any loop-hole to the SDN configuration
com(Net)).

then R+
com(Net) = R̂+

Net.

Theorem 1 suggests a time-saving way for computing a
transitive closure of 1-hop packet forwarding relation for an
updated configuration without referring to a iterative proce-
dure. It should be emphasized that most network configurations
appeared in practice satisfy both premises of Theorem 1.
Usually, if a packet doesn’t match any forwarding rule then
either the packet should be drop, or a network manager should
be notified about such packet. In OpenFlow protocol this is
achieved by sending a PacketIn message to the SDN controller.
As for the second requirement, loop-holes in network config-
urations are strongly undesirable and typical PFPs include this
demand. Both premises are expressed by FO2[TC] formulae
and can be checked by our verification system.

To complete a picture of model modification techniques
we show how to modify efficiently a SDN model MNet when
an updating command com = del(w, 〈z,y〉, `) disables some
packet forwarding rules in the flow table of a switch w. In this
case we use two auxiliary packet state properties:

Φz,y,w(s)=
N∨
i=1

Ez[i](s.hd[i])∧
k∨
j=1

Ey[j](s.pt[j])∧(s.sw = w),

Ψpred
z,y,w(s) = ∃s′((R+

Net(s, s
′) ∨ s = s′) ∧ Φz,y,w(s′))

A packet state s satisfies the first property iff it matches a
forwarding rule to be deleted by com. The second property
holds iff a packet can be routed from the state s in the
configuration Net with the use of a rule to be deleted by
com.

A model modification procedure builds BDDs for the
following relations:

1) R̂defNet(s, s
′) = RdefNet(s, s

′) ∨ (Φz,y,w(s)∧

∧ s′.hd = s.hd∧s′.pt = octrl∧s′.sw = w),

2) R̂Net(s, s′) = (RNet(s, s
′) ∧ ¬Φz,y,w(s))∨

∨(RdefNet(s, s
′) ∧ Φz,y,w(s)),

3) R̂+
Net(s, s

′) = R1(s, s′) ∨R2(s, s′),

where

R1(s, s′) = R+
Net(s, s

′) ∧ ¬(Ψpred
z,y,w(s) ∧Ψpost

z,y,w(s′)),

R2(s,s′) = ∃u((R+
Net(s,u) ∨ s = u) ∧Ψpred

z,y,w(u)∧

∃v(R̂Net(u,v)∧¬Ψpred
z,y,w(v)∧ (R+

Net(v, s
′)∨v = s′))).

Theorem 2. Suppose that Net is an arbitrary SDN configura-
tion such that all packet forwarding rules have the same pri-
ority `, and a command com = del(w, 〈z,y〉, `) deletes rules
of priority `. Then Rcom(Net) = R̂Net, R

def
com(Net) = R̂defNet.
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Fig. 1. The general arrangement of VERMONT

Moreover, if Net satisfies the requirement

MNet |= ¬∃X(Φz,y,w(X) ∧ ∃Y (R+
Net(X,Y ) ∧ Φz,y,w(Y )))

(packet forwarding rules deleted by the command com fire at
most once along any route in the configuration Net)

then R+
com(Net) = R̂+

Net.

Theorems 1 and 2 show that whatever the size of a network
and a number of forwarding rules in it might be, one needs
to perform only a bounded number of operations on BDDs to
modify a BDD representation of the SDN model in response
to the execution of a network updating command. But these
theorems are valid if all forwarding rules in network configu-
rations have the same priority. A more involved techniques
is implemented in VERMONT to achieve the same effect
in a more general case for configurations which have packet
forwarding rules with multiple priorities.

VI. A RUNTIME SDN VERIFICATION TOOLSET
VERMONT: STRUCTURE AND FUNCTIONALITY

An SDN runtime verification toolset VERMONT includes
four main components (see Fig. 1):

1) Proxy-Server: a module for intercepting OpenFlow com-
mands and messages,

2) Verifier: a module for SDN model building, model checking
and model updating,

3) Feeder: a module for supplying Verifier with data for
building the initial SDN model,

4) Editor: a module for editing PFP specifications.

In the course of its operation VERMONT interacts with
OpenFlow controller and SDN switches. When carrying out
experiments we used an open source Floodlight SDN Con-
troller [28] and Mininet — a software system for SDN
prototyping [29] — instead of real SDNs.

One of the aims of network engineering is to provide such a
loading of switches with forwarding rules as to guarantee com-
pliance with the PFP. VERMONT provides some automation
to the solution of this task. This toolset can be installed in line



with the control plane. It observes state changes of a network
by intercepting messages sent by switches to the controller
and command sent by the controller to switches. It builds an
adequate formal model of a whole network and checks every
event, such as installation, deletion, or modification of rules,
port and switch up and down events, against a set formal
requirements of PFP. Before a network updating command
is sent to a switch VERMONT simulates its execution and
checks whether an updated network configuration satisfies all
requirements of current PFP. If this is the case then the com-
mand is delivered to the corresponding switch. Upon detecting
a violation of PFP VERMONT may block the transmission of
the updating command through the control channel, alerts a
network administrator, and gives some additional information
to elucidate a possible source of an error.

VERMONT may find vast applications in SDN technol-
ogy. It can be attached to a SDN controller just to check
basic safety properties (the absence of loops, blackholes,
(un)reachability of certain hosts by specific routes, etc.) of
the flow-tables managed by his controller. VERMONT may
be also cooperated with software units (like FlowVisor) that
aggregate several controllers. In this case VERMONT checks
the compatibility of PFPs implemented by these controllers.
This toolset can be also used as a fully automatic safeguard
for every software application which implements certain PFP
on a SDN controller. In this case VERMONT may handle
individual network updating commands as well as the whole
batches of such commands.

The principal functionality of the main modules of VER-
MONT are as follows.

Proxy-Server communicates with OpenFlow controller,
SDN switches and Verifier. It intercepts all commands sent by
the controller to SDN switches and all messages transmitted
from the SDN switches to the controller. Proxy-Server is
managed by the user of VERMONT (network manager) who
can turn on and off this module, select its operational mode
(SEAMLESS, MIRROR, INTERRUPT), set up and change
the operation parameters. Depending on the chosen operation
mode Proxy-Server may provide data (OpenFlow messages
and commands) to Verifier, suspend some commands sent
by the controller to SDN switches and block some of these
commands by the results of their verification.

Verifier communicates with Proxy-Server, Feeder and Ed-
itor. This module runs three main algorithms:

• an initialization procedure which, given a description
of a current network configuration (i.e. network topol-
ogy and the content of all flow-tables in the network
switches) Net0, builds a BDD representation of a
formal model MNet0 ;

• a model checking procedure which verifies a set of
PFP formal specifications Φ1, . . . ,Φn against a formal
model of network configuration Net.

• a model updating procedure which, given a BDD
representation of a formal model MNet for a current
network configuration Net and a network updating
command com builds a BDD representation for the
modified model Mcom(Net) for the updated SDN
configuration com(Net).

In the interaction with Proxy-server Verifier plays a role of
server. It receives from Proxy-Server information on network
updating, namely, a flow of OpenFlow network updating com-
mands and messages on forwarding rules time-out expirations.
Depending on the operation mode of the toolset it may check
the formal models of updated configurations against the given
PFP specifications and informs Proxy-server about the results
of verification. In the interaction with Feeder Verifier plays a
role of client. It may send requests to Feeder for the descrip-
tions of a current network configuration. Verifier communicates
with Editor as a server to receive formal specifications of a
current PFP.

Feeder interacts with Verifier and with OpenFlow con-
troller. At the requests from Verifier it communicates with the
OpenFlow controller as a client and asks it about the necessary
data on network topology and the content of flow tables. At
receiving these data on current network configuration Feeder
retransmits them to Verifier. We use Feeder as a separate
module to make our system independent of a particular SDN
controller.

By means of Editor a user of the Toolset may input PFP
formal specifications, check their syntactic correctness, and
send these specifications to Verifier.

The current version of VERMONT admits three operating
modes.

1) In SEAMLESS mode VERMONT operates like a
control flow channel between the OpenFlow con-
troller and the network of switches. Proxy-Server
does not invoke Verifier, commands from the Con-
troller are not suspended and they are delivered to
corresponding switches without delay. VERMONT
proceeds to this mode either by the request from its
user (manually), or at the shutting down of commu-
nication with Verifier (automatically).

2) In MIRROR mode Proxy-Server retransmits without
delay all OpenFlow commands and messages to the
corresponding parties (controller and switches) but
the copies of these control flow data are delivered
to Verifier. At receiving network updating commands
Verifier checks their correctness; it informs a user
about the results of the checking, but does not block
incorrect commands.

3) In INTERRUPT mode VERMONT carries out a
full-fledged runtime verification of network config-
urations and handle the flow of network updating
commands sent to by the OpenFlow controller to
SDN switches. All updating commands and statis-
tics requests that depend on these commands are
suspended by Proxy-Server until their verification is
completed. The copies of suspended commands are
delivered to Verifier. It simulates the execution of
every such command on the current network config-
uration and checks the updated configuration against
the PFP specifications received from Editor. If all PFP
requirements are satisfied then Verifier allows Proxy-
Server to sent the command to the corresponding
switch. Otherwise, Verifier instructs Proxy-Server to
drop the command and inform the network manager
about this event.



FT(60) FT (80) FT(100) SUN-mod
number of 36900 49300 61500 15484
rules
MB 2756 3689 4574 4714
MC Φ1 0.4 0.4 0.4 51
MC Φ2 30 36 32 –
MC Φ3 – – – 222
MC Φ3 – – – 316
MU(add) 9 168 172 426
max
MU(add) 3 3 3 1
min
MU(add) 6 6 6 67
average
MU(del) 178 174 176 307
max
MU(del) 4 5 5 1
min
MU(del) 8 9 10 99
average

time (ms)
MB — Model Building
MC — Model Checking
MU(add) — Model Updating by add command
MU(del) — Model Updating by del command

Table 1.

VII. CONCLUSIONS

To evaluate the performance of our runtime verification
toolset VERMONT we made two series of experiments. In
the first series we apply VERMONT to a SDN which has a
fat-tree 3-level topology and includes 27 switches: 2 switches
in the upper level, 5 pairs of switches in the middle level, and
5 triples of switches in the bottom level. The egress ports of
the bottom-level switches are connected to H end-hosts, where
H varies from 50 to 100. We denote this type of networks by
FT(H). The length of packet header is N = 40.

An initial loading of flow tables enables every pair of end-
hosts to communicate via a route of the shortest length. Each
packet forwarding rule has a certain time-out. As soon as
this time-out expires a rule is deleted from the table and the
controller is notified about this event. At receiving this message
the controller restores the table by sending command add to
install the rule. VERMONT monitors message and command
exchange between the controller and the network and checks
the following two properties of SDN configurations: 1) Φ1:
there are no topological loops, and 2) Φ2: some routes have
length 5, but there are no routes of length 6.

In the second series of experiments we dealt with the model
of Stanford University Backbone Net (SUN). This network
has 16 switches, and each of them has three flow-tables.
Stanford has made the entire configuration rule set public. The
authors of [20] used in their research the description of a SUN
configuration presented in [31], and we followed their example.
The length of packet header in SUN is N = 128. In the case of
SUN we used VERMONT for checking (along with Φ1) two
properties of SDN configurations: 3) Φ3: there are no routes of

Tool MB MUC Spec
(ms) (ms) Lang

VERMONT 4700 50 – 700 FO2[TC]
(2014)
NetPlumber 37000 2 – 1000 CTL
(2013) [20]
VeriFlow > 4000 68-100 Fixed
(2013) [19] properties
AP Verifier 1000 0.1 Fixed
(2013) [21] properties
FlowChecker 1200000 350 – 67000 CTL
(2010) [11]
Anteater 400000 ??? Fixed
(2011) [17] properties

MB — Model Building
MUC — Model Updating and Checking

Table 2.

length greater than 3, and 4) Φ4: there are no routes of length
greater than 4.

The results of our experiments with networks of both types
are presented in Table 1.

SUN is also used in many papers [11], [17], [19], [20],
[21] on network verification as a benchmark. The results of
comparative analysis of the performance of these tools is
presented in Table 2. To make our comparative analysis fair
we did not modify in this case SUN flow tables.

As it can be seen from Table 2, VERMONT has the
most expressive PFP specification language and displays good
performance in building initial models of SDN configurations.
But some verification toolsets, such as VeriFlow [19] and AP-
Verifier [21], overcome VERMONT in the efficiency of model
updating. The high speed of both tools in model checking
and model updating is due to specific presentation of packet
state space W . The set of packet headers H is divided into
equivalence classes: headers h′ and h′′ are equivalent w.r.t. a
configuration Net if every switch identically processes packets
with headers h′ and h′′ when they arrive at the same port.
This techniques makes it possible to build a succinct explicit
graph-theoretic presentation of 1-hop packet forwarding rela-
tion RNet. But such division of H into equivalence classes
may be efficiently computed and modified only in the case
when the packet forwarding rules don’t change packet headers.
Moreover, only a bounded class of basic network configuration
properties can be checked for SDN models thus presented.
VERMONT, in contrast, is able to work with arbitrary network
configurations and it has far more expressive specification
language. Nevertheless, we believe that the performance of
our model updating procedures can be substantially improved
with the help of new techniques similar to those used in
[21]. This is one of the lines of our further research on this
topic. Another important task to be solved is the designing
and implementation of a new module for generating counter-
example in those cases when a network configuration does not
satisfy some PFP requirement expressed by a ∀-formula of
PFP specification language.
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